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Key Points: 7 

 Apprioxmaitely 70% of the winter storms in the basin are affected by Atmospheric River 8 

and supply over half of the snow peak 9 

 More minor snowfall events occur during dry and warm years but moderate and heavy 10 

storms are always the predominant source of SWE 11 

 There is no significant trend on a basin-wide basis while some parts of the domain show 12 

regional upward trend 13 
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Abstract 15 

We used the Variable Infiltration Capacity (VIC) macroscale hydrology model to reconstruct 16 

daily snowpack records in the Upper Colorado River Basin headwaters for the 67-water-year 17 

period 1949-2015 with focus on the accumulation season. We applied a snowfall-based storm 18 

identification method to the reconstructed data to attribute the sources of the accumulated snow 19 

as either Atmospheric River (AR) (based on an AR catalog) and non-AR. Over our study period, 20 

and using a definition based on basin-average snow water equivalent (SWE) increase, we find 21 

that there are on average 37.4 days during which snow accumulates each year, consisting of an 22 

average of 16.2 storms per water year.  These storms account for an average of 78.2% of annual 23 

peak SWE. This number is higher (86.1%) in wet years than during dry years (70.3%). 69% of 24 

all storms on average are AR-related they contribute 56.3% of the annual snowpack peak. 25 

Although there are no significant basin-wide trends in AR-storm days or storm days per year 26 

over our study period, we found that there were parts of the basin (mostly in the middle latitudes) 27 

with significant upward trends in the contributions of AR-days and storms to accumulated SWE.  28 
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1. Introduction 29 

The Colorado River is the largest river in the U.S. Southwest, and the region’s most 30 

important surface water source. Although the area of the entire Colorado River Basin (CRB) is 31 

approximately 637,000 km
2
, more than 90% of the natural streamflow is generated in the Upper 32 

Colorado Basin (UCRB) above Lees Ferry, AZ. The river is highly influenced by snowpack in 33 

the Rocky Mountain headwaters sub-basins, which account for over 70% of the river’s annual 34 

flow (Li et al., 2017). The Colorado River is one of the most heavily regulated rivers in the 35 

world, owing  to municipal and agricultural water demands in the Lower Basin (below Lees 36 

Ferry) where some 13,000 km
2
 of agricultural lands are irrigated with river water (Cohen et al., 37 

2013), and from which an additional ~20% of the river’s flow is transferred to California for 38 

agricultural and urban water supply. The ability of the river to meet these water demands is aided 39 

by two large reservoirs, Lakes Powell and Mead, which have a combined storage capacity in 40 

excess of four times the mean flow at Lees Ferry. Given the exceptionally high use of the river’s 41 

water and the need to efficiently manage it in the face of a warming climate, better understanding 42 

of the hydrological behavior and patterns within the basin are of great interest both to the 43 

scientific and water management communities.  44 

Despite the significance of the snowpack in the UCRB headwaters, the long-term 45 

climatology of winter storm contributions to the snowpack have not been carefully explored. It is 46 

known that differences in climatic conditions strongly affect the snowpack variability over the 47 

mountainous parts of the UCRB (Trujillo & Molotch, 2014). Snow observations come mostly 48 

from the NRCS SNOTEL Snow Water Equivalent (SWE) network with about 80 stations across 49 

the UCRB, most of which have been in operation since the 1980s and 1990s, and predecessor 50 

manual snow course observations. Some previous studies have attempted to reconstruct the 51 
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snowpack in the basin with a variety of data sources and tools. Schneider & Molotch (2016) used 52 

SNOTEL SWE data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) 53 

satellite snow areal extent imagery to improve the real-time snowpack estimate in the Colorado 54 

River Basin. Timilsena & Piechota (2008) analyzed tree-ring chronologies for the period 1500-55 

1980, and reconstructed SWE at a set of snow course sites in the UCRB. Several model-based 56 

experiments have also reconstructed snowpack over the UCRB. Barlage et al. (2010) improved 57 

the snow simulation in the Noah land surface model (Ek et al., 2003) and reported improved 58 

performance of the updated model’s ability to simulate the magnitude and timing of seasonal 59 

maximum SWE over the UCRB headwaters. Ikeda et al. (2010) evaluated seasonal variations in 60 

UCRB snowpack using the Weather Research and Forecasting (WRF) regional climate model. 61 

The implications of future warming over the UCRB, including snowpack changes, were studied 62 

using WRF by Rasmussen et al. (2011). Chen et al. (2014) employed several well-known 63 

hydrological models to simulate SWE over the UCRB. However, none of the previous published 64 

work has evaluated the contribution of winter storms (and in particular, Atmospheric Rivers) to 65 

SWE in the UCRB. 66 

In contrast, several recent studies have evaluated the characteristics of storms that 67 

contribute to snowpacks in the Sierra-Nevada (Dettinger, 2016; Eldardiry et al., 2019; Huning & 68 

Margulis, 2017; Margulis et al., 2016). These studies are potentially relevant to the UCRB as 69 

well, notwithstanding that there are important differences in winter storm patterns in the two 70 

regions. California winter precipitation is highly dependent on large storms, as the wettest 5% of 71 

precipitating days contribute around 1/3 of the total precipitation (Dettinger, 2016). Huning & 72 

Margulis (2017a) analyzed a high-resolution reanalysis SWE dataset (Margulis et al., 2015, 73 

2016) for the Sierra Nevada and found that more than half of the snowpack in the region come 74 
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from three or fewer large storms. They defined snowstorms as periods during which basin-wide 75 

SWE accumulates (grid cells at 90-m resolution higher than 75
th

 percentile of the elevation 76 

distribution show positive SWE changes) with increases greater than 1% of the total annual 77 

maximum SWE (∆SWE>1%). They found that at least 50% of the accumulated snow (averaged 78 

over the Sierra Nevada) comes from no more than three large storms. Eldardiry et al., (2019) 79 

used WRF reconstructions of hydroclimatic variables along the Pacific Coast of the western U.S. 80 

and found that high positive net snow accumulation during winter is mostly associated with AR 81 

events. 82 

Here, we utilize the physically-based, semi-distributed Variable Infiltration Capacity 83 

(VIC) hydrological model forced with the Livneh et al. (2013) dataset to reconstruct SWE over 84 

the headwaters of the UCRB (Fig.1) for water years 1949-2014 (hereafter any reference to years 85 

implies water years unless stated otherwise). We then use the simulated SWE data to identify 86 

storms and assess their spatial patterns and origins, including storms (and storm days) that are 87 

associated with ARs.  88 

2. Dataset and Methods 89 

2.1 Hydrologic model and meteorological forcings 90 

 We used the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) version 4.2.d 91 

as our primary tool to reconstruct snowpack over the UCRB during our 1949-2014 study period.  92 

We focused on the accumulation season, which we define as the period from Oct-1
st
 to the date 93 

of domain-average peak SWE each water year, where we defined our domain as all 1/16
th

 degree 94 

grid cells in the UCRB where long-term average Apr-1st SWE exceeded 50 mm (see Figure 1). 95 

The VIC model requires gridded meteorological variables as forcings. We used daily gridded 96 

records (at 1/16
th

 degree spatial resolution) of precipitation, temperature maximum, temperature 97 
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minimum, wind speed from the Livneh et al. (2013) data set (hereafter L13). We applied the 98 

Mountain Climate (MTCLIM) algorithm (see Bohn et al., 2013 for details) to produce downward 99 

longwave and shortwave radiation, surface air pressure and humidity.  100 

2.2 Snow observation and AR catalogs 101 

 SNOTEL stations (of which there are 86 within our domain) collect daily SWE, air 102 

temperature, and precipitation observations dating back to the 1980s (and in some cases 1990s) 103 

over the Western U.S. The SWE observations reported at SNOTEL stations are measured by 104 

automated snow pillows which essentially weigh the overlying snow mass. The 86 SNOTEL 105 

sites we used all have data availability from 1991 or earlier.  We downloaded all the available 106 

records for each of the 86 sites for further analysis.  107 

We used the AR catalog of Guan & Waliser (2015) which is based on the NCEP-NCAR 108 

reanalysis. The AR catalog is derived from 6-hourly global atmospheric products from the 109 

NCEP/NCAR reanalysis (Kalnay et al., 1996) for calendar years 1948-2015 and has been used in 110 

other snow-related studies (e.g. Eldardiry et al., 2019; Goldenson et al., 2018; Huning et al., 111 

2019; Little et al., 2019). Details of the detection algorithm and the AR catalog can be found in 112 

Guan & Waliser (2015) and therefore are not discussed here. 113 

2.3 Storm identification 114 

 We followed the approach of Huning & Margulis (2017) which defines storms based on 115 

SWE volume with minor modifications.  We categorized storm days as days with basin-wide 116 

average SWE increase equal or greater to 1% of the long-term average of the domain’s annual 117 

SWE maximum (270 mm for our domain). We aggregated consecutive storm days into storms, 118 

which accounts for the possibility that snowfall events can be longer than one day (Serreze et al., 119 

2001).  120 
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One concern about this identification approach is that it may miss storms that partially 121 

cover the domain. In order to address this issue, we tested a cell-based storm identification 122 

criterion, and then defined basin-scale storm days as occurring when more than 30% of the grid 123 

cells in our domain had SWE increases larger than the 2.7 mm threshold (1% of 270 mm) on the 124 

given day. The number of storms and AR-storms identified by the two methods are quite similar 125 

(less than 10% difference) as shown in Supplement Figure S1. The consistency of the two 126 

methods indicates that we are not missing major storms that cover only part of the domain. 127 

Therefore, we used the basin-average threshold in our subsequent analysis.  128 

As we apply our identification algorithm, the storm identification threshold is a fixed 129 

value taken as the average over the entire domain (2.7 mm/d). We use this criterion to analyze 130 

spatial diversity of storm contributions to SWE across the domain, as well as the contributions in 131 

drought and wet years. Apart from identifying major snowfall events, we further classified 132 

storms into AR and non-AR categories using the Guan & Waliser (2015) catalog. For each storm 133 

identified as described above, we then checked whether an AR event occurred in the domain on 134 

the same date (as well as one day before and one day after). Following this approach, we 135 

classified all storms into AR-related and non-AR types for further evaluation.  136 

3. Results and Discussion 137 

3.1 Snowpack reconstruction verification 138 

 We used the VIC model to reconstruct the snowpack over our 67-year study period. The 139 

VIC model has been successfully applied in numerous previous studies of hydrological 140 

conditions and associated water resources of the Colorado River basin (e.g. Barnett et al., 2005; 141 

Barnett et al., 2008; Christensen et al., 2004; Christensen & Lettenmaier, 2007; Koster et al., 142 

2010; Vano et al., 2012, 2014; Xiao et al., 2018; and others). More specifically, several previous 143 
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studies have used the VIC model to address snow-related issues in the CRB. For instance, Mote 144 

et al. (2005, 2018) employed both in-situ measurements and VIC simulations to assess long-term 145 

snow declines in the mountainous Western U.S., and found that the trends estimated by the two 146 

approaches were in good agreement in the UCRB. For instance, Painter et al., (2010) examined 147 

the effects of dust radiative forcing on runoff responses in the UCRB using VIC model 148 

simulations. Deems et al., (2013), in a follow-up study, utilized the VIC model to estimate the 149 

combined influences of dust and regional warming on snowmelt and streamflow timing in the 150 

CRB. Li et al., (2017) performed VIC model simulations over the mountainous Western U.S. and 151 

used the results to evaluate the contribution of snowpack to annual streamflow across. In 152 

summary, the VIC model has been widely applied in the UCRB and elsewhere in the Western 153 

U.S. to reconstruct long-term variations in snowpack, in a manner similar to our application here. 154 

 The L13 data set likewise has been successfully used in a number of previous studies of 155 

the UCRB, including several of those mentioned above as well as  Corringham & Cayan, 2019; 156 

Dierauer et al., 2018; Gautam & Mascaro, 2018; Hoerling et al., 2019; McAfee et al., 2019; and 157 

Yan et al., 2019. The L13 data set is observation (and model) based, and hydrologically 158 

consistent. It was derived from precipitation and temperature records from approximately 20,000 159 

NOAA Cooperative Observer (COOP) stations across the conterminous U.S. It is an update an 160 

extension of the Maurer et al. (2002) data set. The methods used in the L13 data set are based on 161 

Maurer et al., (2002) but with higher spatial resolution and longer temporal coverage. 162 

 Notwithstanding the widespread use of the VIC model and the L13 data set, we evaluated 163 

the performance of both the model and data set. We extracted daily precipitation records during 164 

the accumulation season of each water year for all 86 of the SNOTEL sites (see Figure 1 for 165 

locations) as well as the L13 temperature and wind speed data to run the VIC model. The 166 
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purpose of utilizing SNOTEL observed precipitation is to reduce the inconsistency between 167 

SNOTEL (point) and gridded values, as well as the effects of topographic differences between 168 

point observations and interpolated gridded data. Figure 2 shows the cumulative distribution 169 

functions (CDFs) of VIC-simulated and observed annual SWE maxima for 1991-2011. CDFs of 170 

average results over all sites and observed SWE peak values at five individual stations, which are 171 

geographically distributed across the domain (see Figure S2 and Table S1), are included in 172 

Figure 2. The simulated and observed CDFs of SWE annual peak values are within the same 173 

range, while the observations are generally slightly higher than VIC (the average difference in 174 

the median is 54.8 mm, 12.3% of the mean). The differences are likely due in substantial part to 175 

the fact that the VIC simulations are for an entire 1/16˚ grid cell and SNOTEL observations are 176 

for points within the grid cell. We also compared the time-series of the mean observed and 177 

simulated SWE values across the 86 SNOTEL sites (and the 1/16
th

 degree grid cells within 178 

which they lie) during the accumulation seasons (Figure S3) and the simulated results and the 179 

observed snow daily records agree quite well. On the basis of these comparisons, we conclude 180 

that the model results provide plausible reproductions of the observations, and should be 181 

sufficient for our purposes.   182 

3.2 Basin-wide storm contribution 183 

 We applied the methods described in Section 2.3 to produce VIC-simulated SWE records 184 

using the L13 forcings to identify storms responsible for substantial SWE increases and the 185 

subset of those storms that are AR-related. Figure 3 shows time series plots of individual storm 186 

days, number of storms and number of AR-related storms. Over the entire study period, there 187 

were on average 37.4 storm days per year. The mean number of storms was 16.2 per year of 188 

which 69% (11.2) were AR-related.  189 
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 After identifying the storms in each accumulation season, we calculated each storm’s 190 

contribution to basin peak SWE for that water year. Figure 4 shows the contribution of storms to 191 

annual maximum SWE. We also show the contributions from each AR storm in the same figure. 192 

We note that we only include storm days within the AR-window (as described in section 2.3) in 193 

our calculation of AR-storm contributions (we use the same term “AR-storm” hereafter to denote 194 

the storm days within the AR-window). This definition is different from “AR-related” storms, 195 

although the difference is rather limited (only 10% of the storm days belonging to an AR-related 196 

storm are outside the AR-window). Finally, we calculated the contributions from all days when 197 

precipitation yielded SWE increases (denoted as “all precipitation” hereafter) in the 198 

accumulation season (Figure 4). In some cases, the estimates can exceed 100%. This can occur 199 

because we compared the accumulated precipitation to annual peak SWE over the entire domain, 200 

and some (low-elevation areas in particular) can experience mid-season melt.  Furthermore, 201 

sublimation is a factor that results in accumulated precipitation exceeding annual peak SWE.  202 

We find that the average contribution of AR-storms to annual peak SWE is 63.3% over 203 

the entire record, and the average contribution from all storm days is 78.2%, which indicates that 204 

a large portion (~80%) of the SWE in the UCRB originates from moderate to heavy snow 205 

storms. Huning & Margulis (2017) used a similar approach to estimate the range of snowstorm 206 

contributions in the Sierra-Nevada and found a range of 83%-93%. Compared to the Sierra 207 

Nevada, the values are smaller in the UCRB (perhaps because the distance from the coast is 208 

greater, and storms are somewhat less structured than in the Sierra Nevada) but nonetheless is 209 

still quite high. We also find that about 75% of all individual storm days are AR-related, and 210 

they produce 63% of the total maximum snow accumulation. The average contribution of all 211 

precipitation days to the grid cell maximum accumulation averaged over all grid cells in our 212 
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domain is 116.8%, which implies that the excess (16.8% of the SWE maxima) melts (or is 213 

sublimated) before the domain’s peak SWE occurs.  214 

3.3 Wet, dry, warm and cold years 215 

 We selected the 10 most extreme years in each category (wet, dry, warm and cold) and 216 

investigated the contributions of storm days in each of these categories to SWE. We defined wet, 217 

dry warm, and cold based on the total precipitation amount or average temperature during the 218 

accumulation season (from Oct 1
st
 to the date of peak SWE) averaged over our domain. Table 1 219 

reports the annual average number of storm days, storms and AR-storms in each category. The 220 

number of storms and storm days (both AR and non-AR) is higher during wet and cold years 221 

compared with dry and warm years. The differences between the number of AR-storms in each 222 

of the extreme climatic categories are relatively small, given the fact that only about 10 AR-223 

storms occur per year on climatological average. However, the differences in terms of storm days 224 

are larger – 54.9 vs. 23.0 days per year for wet vs dry, and 41.5 vs 36.2 cold vs warm, 225 

respectively.  226 

Table 2 gives the percent contributions from storms and precipitation days to the 227 

maximum annual SWE for the four climatic categories, as well as the climatology (all years). 228 

Comparison of the statistics in wet and dry years suggests that while storms play a more 229 

important role in snow accumulation during wet years, the contribution percentages from all 230 

precipitation in wet years are nonetheless lower than for dry years. The reason for this is that the 231 

actual amount of accumulated SWE is much smaller during dry years, which makes contribution 232 

percentages rise. The SWE losses (difference between total accumulated SWE and the annual 233 

maxima) are similar for wet (2.4 km
3
/yr) and dry (2.6 km

3
/yr) years (but as a percentage of peak 234 

SWE, much larger in dry years). These results suggest that during dry years, relatively small 235 
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snowfall events are more important to the accumulated snowpack in UCRB. Nonetheless, the 236 

dominant contribution to SWE is from storms in both wet and dry years. During dry years, not 237 

only are there are fewer storms, but the precipitation amount per storm also is less. The average 238 

SWE increase is 0.76 km
3
 per storm for dry years and 1.57 km

3
 per storm for wet years (reported 239 

in Table 2). On the other hand, the contribution percentages of AR-storms, all storms and all 240 

precipitation days are all higher in warm years than cold ones, and the accumulated maximum 241 

SWE decreases in warm years. The contribution from all precipitation in cold years are lowest as 242 

expected, arguably the result of less mid-season SWE loss by melt or sublimation (only 1.8 243 

km
3
/yr, 4% of the climatology in cold years, is eliminated during the mid-season). In cold and 244 

wet years, snowfall contributes more efficiently to maximum SWE (less midwinter loss) and the 245 

contributions from storms are higher (including AR storms). The flip side of that is that in warm 246 

and dry years, more of the total snowfall comes from minor events. Overall, 72.7% of all storms’ 247 

contribution to annual peak SWE is attributed to AR-storms in all years, as high as 76.5% for 248 

wet years but still 70.7% in dry years (5
th

 row in Table 2). 249 

Figure 5 shows the same bar plots as Figure 4 with wet and dry years highlighted. We 250 

estimated the distribution of the contributions to peak SWE for all the 67-year-long records using 251 

Weibull plotting positions (see Figure 5). Based on the plots of the contributions, we notice that 252 

generally both AR and non-AR storm contributions tend to be higher in wet years and lower in 253 

dry years. For the contribution of all precipitation, the results are somewhat different: the 254 

contributions (of storms to peak SWE) tend to be higher in dry years and lower in wet years. The 255 

reason for dry years having a higher contribution percentage is that maximum SWE in those 256 

years is small. More mid-season SWE loss in dry years also has some effect, but the main 257 
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difference between dry and wet years (with respect to mid-season snowpack loss) is not large 258 

enough (2.7 vs 2.2 km
3
/yr) to be the dominant cause.  259 

Similar to Figure 5, Figure 6 shows the same information for warm and cold years. 260 

During warm years, because mid-season SWE loss effect is the largest amongst the four climatic 261 

conditions, the average percentages are high for AR-storm, all storm, and all precipitation. On 262 

the other hand, both the numbers in Table 2 and the distribution plots in Figure 6 show that storm 263 

contributions during cold years are not much smaller than for all years. This suggests that 264 

although lower winter temperatures result in greater snow accumulation (as the last row of Table 265 

2 indicates), the percentage contribution from storms is not substantially affected. The major 266 

sources of SWE accumulation are still snowfall during storms and thereby are determined 267 

primarily by precipitation amounts. 268 

3.4 Spatial analysis 269 

 Although we defined storms as basin-wide events, most storms do not cover the entire 270 

domain. Therefore, for all event measures (storms, AR-storms and storm days) we performed an 271 

analysis of SWE changes at each grid cell to determine whether that specific grid cellcontributed  272 

to particular events. If the grid cell’s SWE increased by over 0.5 mm after the event (∆SWE>0.5 273 

mm), we considered that grid cell to have contributed to the event. Applying this 0.5 mm 274 

threshold for all the events, we determined each storm’s coverage and number of events that each 275 

grid cell experienced. Using this measure, we found that on average, each storm affected 84.9% 276 

of the entire domain and each AR-storm affected 85.7% of the domain, which indicates that the 277 

AR-storms’ scale is very similar to non-AR storms, but most cover a large part of the domain. 278 

Figure 7 shows the cumulative contribution of (AR-) storms (y-axis) as a function of storm cover 279 

fraction (x-axis), i.e. given a certain value, µ, the y-axis reports how much SWE is provided by 280 
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(AR-) storms that cover less than µ of the domain. Of all the contribution from AR-storms to 281 

annual peak SWE, 71.7% is attributable to AR-storms that affect more than 90% of the entire 282 

region. The contribution from AR-storms that cover less than 70% of the domain is only 6.2%. 283 

The remaining 22.1% (100%-71.7%-6.2%) is contributed by AR-storms that cover between 70-284 

90% of the domain. If we perform the same calculation for all storms, we find that storms that 285 

cover at least 90% of the entire basin provide 67.9% of all storms’ contribution to the SWE 286 

annual maxima. Storms that cover less than 70% of the basin yield 6.1% of the total contribution, 287 

which means the remaining 26.0% is attributed from storms that cover 70-90% of the domain. In 288 

summary, the contributions of both AR- and all storms are mainly attributable to events that 289 

cover much of the domain. 290 

Figure 8 shows the multi-year average number of AR-storms, all storms and storm days 291 

on a grid cell basis averaged over the entire record (note that, as in Figure 1, we only consider 292 

grid cells with > 50 mm average Apr-1
st
 SWE). We also show sub-basin boundaries for reference 293 

(more detailed information about the sub-basin analysis is included in the Supplement). In 294 

general, Figure 1 shows that on average. the eastern part of the basin has more storms and storm 295 

days than the western part of the basin. Furthermore, grid cells with more storm days also have 296 

higher snow accumulation (see Figure 1). Notwithstanding the west to east trend, spatial 297 

variations in storm statistics across the domain generally are modest. 298 

If we compute ∆SWE for each event divided by the basin average peak SWE for each 299 

year, we can form a time series of the contribution of that grid cell to the basin’s total snowpack. 300 

We do so in Figure 9, which shows the average contributions (over the entire study period) from 301 

AR-storms, all storms and all precipitation to basin total snowpack in each grid. The AR-storm 302 

(Fig.9 left panel) and storm (Fig.9 middle panel) maps generally show consistent spatial patterns: 303 
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the highest numbers are in the east and the smallest contributions are the grid cells with lowest 304 

SWE climatology (see Figure1). Nonetheless, if we take all precipitation into consideration, the 305 

northwestern part of the domain (around 42.5˚N) also makes large contributions to the basin 306 

snowpack (Figure 9 right panel). Because the number of storms days in the northwestern part of 307 

the basin are smaller than in the eastern part (Figure 8 right panel), the high contribution in the 308 

plot illustrate that small-scale snowfall events play a greater role in that (northwestern) part of 309 

UCRB than elsewhere. 310 

 We also extracted average AR-storm, storm and all precipitation contributions for warm 311 

and cold years (defined as described in section 3.3), results of which are shown as spatial maps 312 

in Figure 10. Figure 11 shows similar information but for wet and dry years. The spatial patterns 313 

of AR-storm and all-storm contributions during wet and cold years are mostly similar to the 314 

long-term climatology (Figure 8), where larger contributions tend to occur in those cells with 315 

more events. The northwest part (~42.5˚N) of the basin shows uncommonly high snowfall 316 

contributions (as do cool or wet years), which indicates that for warm and dry conditions minor 317 

snowfall events still are especially important as compared with the rest of UCRB. 318 

3.5 Trend analysis 319 

 We performed the non-parametric Mann-Kendall (MK) test (Mann, 1945; Kendall, 1957) 320 

on the time series of basin-wide number of AR-related storms, all storms and number of storm 321 

days per year and found no trends at the 0.05 significance level. Further, the contributions of 322 

AR-storm, all storms and all precipitation reported in Figure 4 also failed to pass the MK-test at 323 

the 0.05 significance level. As for the basin-wide analysis, we found no trends in either the 324 

number of storms or SWE per storm, and for either AR- or all storms. In summary, we detected 325 

no statistically significant trends at the 5% significance level for the 1949-2015 period. However, 326 
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we did find some statistically significant trends when we included earlier (pre-1949) SWE 327 

simulations. For instance, we tested the annual trends in number of storm days and storms over a 328 

longer period, 1916-2015, using VIC SWE output generated using the same methods (AR-related 329 

trends cannot be extended because the AR catalog is not available before 1948). The annual time 330 

series of both are show downward trends, which suggests that there are fewer storms in recent 331 

decades compared to the early 1900s. Nonetheless, the storms’ annual contribution percentage to 332 

peak SWE does not show any (decreasing) trend over 1916-2015 as does the storm number, 333 

which suggests that the average contribution percentage per storm might be increasing. However, 334 

we checked the trend in ∆SWE per storm and found that there is no significant trend over the 335 

same period as above. Therefore, it appears that the increasing contribution percentage per storm 336 

must be the result of decreasing annual peak SWE (which in fact has been observed by others, 337 

see e.g. Mote et al., 2018; Xiao et al., 2019, and others). 338 

 We then applied the MK-test at each grid cell in the domain to evaluate the spatial pattern 339 

of trends. Figure 12 shows the grid cells with statistically significant trends in the number of AR-340 

storms, storms and storm days. There are only 4.6% and 8.4% of total valid cells (long-term Apr 341 

1
st
 SWE > 50 mm) that have downward trends in the number of AR-storm and all-storms trends. 342 

The numbers of cells diagnosed as showing upward trends in the domain are negligible: no 343 

annual upward trend detected in AR-storms, one cell for number of all storms and four cells for 344 

number of individual storm days. Overall, the number of events in the basin does not show 345 

obvious trends over the study period as Figure 12 shows.  346 

 Although there are no statistically significant trends in any of the basin-average storm 347 

contributions (AR-storm, all-storm, and all precipitation), a number of individual grid cells in the 348 

domain have statistically significant trends as shown in Figure 13. The percentage of each type 349 
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are summarized in Table 3. The grid cells with increasing contributions are primarily in the 350 

middle-latitude zone of the domain. In the northwest and southeast part of the domain, ~10% of 351 

the total cells have a significant downward trend in contributions of AR-storm, all-storm and all 352 

precipitation to the snowpack. Figure 14 shows the trend detected by the MK-test in temperature 353 

and precipitation during the accumulation season over all years. The spatial patterns in Figure 13 354 

panel (b) and (c) match well with the pattern of trends in precipitation (Figure 14 right panel), 355 

which suggests that trends in precipitation likely are the primary factor. These maps suggest that 356 

over the entire study period, the snowpack source has moved (slightly) towards the mid-zone of 357 

the domain from the northern and southern extremes.  358 

 Finally, we applied field significance tests to investigate whether the trends detected at 359 

each individual cell are statistically significant at the domain level. We followed the approach 360 

proposed by (Livezey & Chen, 1983) in conducting field significance tests. We determined the 361 

degree of freedom (number of independent sites) following the Chi-square-distribution method 362 

proposed by (Wang & Shen, 1999). The results show that there are too few cells with trends in 363 

number for all three types of events (see Figure 12 presents) to pass the field significance test. 364 

However, the percentage of cells with trends in contributions are large enough (Figure 13) to be 365 

field significant. The fact that the basin-average results do not show statistically significant 366 

trends (discussed above) may be the result of upward and downward cells cancelling over the 367 

domain. 368 

4. Summary and Conclusions 369 

 We applied the VIC model forced with the L13 dataset to reconstruct snowpack in the 370 

UCRB for the last six decades. On average, the simulated daily SWE time series successfully 371 

capture the major characteristics of surface observations during the accumulation season. Using 372 
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the reconstructed SWE and meteorological data, we employed a snowfall-oriented definition to 373 

identify storm contributions to SWE and further investigate the storms variations and 374 

contributions over the domain. Specifically, we conclude that: 375 

1. The average number of days identified as being associated with snowfall storms is 376 

37.4 per year, consisting of an average of 16.2 storms that contribute to the majority 377 

(78.2%) of the annual peak SWE. Atmospheric Rivers in the UCRB affect ~70% of 378 

these storms and supply 56.9% of the accumulated snowpack’s peak value. Compared 379 

to the Sierra Nevada region (Huning & Margulis, 2017), the values are smaller in the 380 

UCRB but nonetheless are still quite high. 381 

2. In the mountainous parts of the UCRB, moderate and heavy storms are the 382 

predominant source of SWE for all four climatic conditions we studied. In wet and 383 

cold years, snowfall contributes more efficiently to annual peak SWE because the 384 

effects of mid-season melt and sublimation are smaller. More minor snowfall events 385 

occur under dry and warm scenarios, and they contributed to 48.4% and 35.8% peak 386 

SWE value during the accumulation season (compared with 21.0% and 27.6% during 387 

wet and cold years). 388 

3. The eastern part of the basin tends to have more storms (and AR-storms) and higher 389 

storm contributions to snow accumulation than the western part. Small-scale snowfall 390 

events have the greatest effect on snow accumulation in the northwestern part of the 391 

basin. By investigating the coverage and contribution of each AR- and non-AR storm, 392 

we found that ~70% of the storms contribution to SWE is attributable to events that 393 

cover at least 90% of the domain. In other words, of all the (AR-) storms, domain-394 

wide events make the main contribution to SWE. 395 
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4. On a basin-wide basis, there are no statistically significant trends in the total number 396 

of storms, number of AR-storms, or in total storm days over the 1949-2015 period for 397 

which AR information is available. However, the number of storms does show a 398 

statistically significant downward trend over a longer period (1916-2015). On the 399 

other hand, there are statistically significant trends for some (less than 1/3 of total 400 

number) individual grid cells. Upward trends mainly are in the mid-latitude 401 

mountainous portion of the basin and grid cells with downward trends are mostly in 402 

the northwestern and southeastern portions of the basin.  403 

 404 

 405 
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Table 1: Long-term mean number of storm days, all storms and AR-storms in one year as 577 

described in section 3.3. All-water year climatology is also provided for reference. 578 

 579 

 Wet years Dry years Warm years Cold years All years 

Storm days 54.9 23.0 36.2 41.5 37.4 

All Storms 18.7 12.8 14.8 17.6 16.2 

AR-storms 13.2 8.0 10.9 11.9 11.2 

 580 

 581 

 582 

 583 

 584 

Table 2: Average contributions of AR-storm, all storms and all precipitation to annual peak SWE 585 

for wet, dry, warm and cold years. The last column presents the climatology of the basin annual 586 

SWE maximum under each category. 587 

 588 

 Wet years Dry years 
Warm 

years 
Cold years All years 

(a) AR-storm 65.9% 49.7% 61.7% 56.0% 56.9% 

(b) All storms 86.1% 70.3% 84.0% 76.9% 78.2% 

Total 107.1% 118.7% 119.8% 104.5% 110.6% 

(a)/(b) 76.5% 70.7% 73.5% 72.8% 72.8% 

SWE (km
3
) 34.0 13.8 20.3 27.1 23.2 

∆SWE per AR-storm 

(km
3
) 

1.97 1.22 1.37 1.66 1.51 

∆SWE per storm (km
3
) 1.57 0.76 1.15 1.18 1.12 

 589 

 590 

 591 

 592 

 593 

Table 3: Percentage of grid cells that have trends in annual contribution of AR-storm, all storm 594 

and all precipitation (Total) at 0.05 significant level over the domain. 595 

 596 

 AR-storm All storm Total 

Upward trend 8.9% 16.1% 20.1% 

Downward trend 8.0% 9.7% 11.2% 

 597 

  598 
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  599 

Figure 1: Headwater regions in the Upper Colorado River Basin. Only those grid cells with long-600 

term average Apr 1
st
 SWE>50mm are shown. Red dots mark the 86 SNOTEL station locations 601 

within the domain. 602 

 603 



manuscript submitted to Water Resources Research 

 

 604 

Figure 2: CDFs of simulated (red) and observed (blue) annual SWE maxima over 1991-2011. 605 

The first panel is the average result across all 86 SNOTEL sites. The other panels are for 5 606 

selected stations (detailed information of these 5 sites is provided in the Figure S2 and Table S1 607 

in the supplement).  608 
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 610 

 611 

Figure 3: Time series of number of storm days (top), number of storms (middle) and number of 612 

AR-related storms (bottom) for 1949-2015. The red dashed line is the linear regression against 613 

time (although none is statistically significant). The slope is reported in red. The orange line is 614 

smoothed using a Lowess fitter (fraction = 0.17).  615 

  616 
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 617 

 618 

Figure 4: The contribution of (a) AR-storms, (b) all storms and (c) all precipitation to basin-wide 619 

SWE in each year. The red dashed line indicates the long-term mean. 620 

  621 
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 622 

Figure 5: Bar plots (left column) and empirical distributions (right column) of the contribution to 623 

peak SWE of AR storms, all storms, and all precipitation over the study period. Wet years are 624 

highlighted with blue and dry years are with red. The left column bars are the same as in Figure 625 

4. 626 

  627 
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 628 

Figure 6: Same as Figure 5 but for warm years (pink) and cold years (green).   629 

 630 

  631 
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 632 

 633 

 634 

Figure 7: Coverage area fraction vs cumulative contribution to snowpack of AR-storms (red) and 635 

all storms (blue). The y-axis is in log scale. 636 

  637 
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 638 

Figure 8: Multiyear average number of AR-storms (left), all storms (middle) and storm days 639 

(right) for all grid cells. Note that the color scales are different in each panel. 640 
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 642 

 643 

 644 

Figure 9:  AR-storm (left), all storms (middle) and all precipitation (right) average contribution 645 

to annual SWE maximum over the 1949-2014 study period. 646 

 647 
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 649 

 650 

Figure 10: Average contribution of AR-storm, all storms and all precipitation to annual SWE 651 

maximum over the selected wet (top row) and dry (bottom row) years for each individual grid 652 

cell.  653 

  654 

AR-storm

W
e

t 
y
e

a
rs

All storm All P

D
ry

 y
e

a
rs



manuscript submitted to Water Resources Research 

 

 655 

Figure 11: Same as Figure 9 but for warm (top row) and cold (bottom row) years. 656 
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 658 

 659 

Figure 12: Annual trends (by MK-test at 0.05 significant level) in number of AR-storms (left), all 660 

storms (middle) and individual storm days (right) at all grid cells. Blue indicates upward trend, 661 

red is downward trend and white represents no significant trend. Only the grid cells with long-662 

term Apr-1
st
 SWE > 50 mm are shown.  663 
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 665 

Figure 13: Annual trends (by MK-test at 0.05 significant level) in contributions of AR-storms 666 

(left), all storms (middle) and all precipitation (right) to annual maximum SWE. Blue indicates 667 

upward trend and red is downward trend.  668 
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 671 

Figure 14: MK-trend test results for temperature (left) and total precipitation during the 672 

accumulation season at each single grid over the 1949-2015. Blue indicates statistically 673 

significant upward trend and red indicates statistically significant downward trend at 0.05 674 

significance level. 675 
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