
1.  Introduction
In recent decades, floods have accounted for billions of dollars in economic damage and hundreds of lives lost 
annually in the U.S. (Downton et al., 2005). Therefore, it is of both scientific and public interest to understand 
how and why flood frequency, magnitude, and timing have changed in recent decades. Where flood changes 
have occurred, the causes may be either anthropogenic or natural (Berghuijs et al., 2014). For example, Blum 
et al.  (2020) found that annual maximum flood magnitudes increased by 3.3%, on average, for each percent-
age point increase in impervious cover. Furthermore, climate change is increasing the intensity and variability 
of rainfall extremes globally (Donat et  al.,  2013; Huang et  al., 2020; Kendon et  al.,  2014; Min et  al.,  2013; 
Wanders et al., 2017; Westra et al., 2013), which has the potential to increase flood frequency and magnitudes 
(Pall et al., 2011). Flood frequency analysis is a key tool for engineers and water resources managers who are 
charged with designing and managing resilient flood infrastructure (Fayne et al., 2019; Perez et al., 2021; Yan 
et  al.,  2020). Recent studies have pointed to deficiencies in flood infrastructure planning that is still mostly 
based on an assumption of stationary climate, and fails to account for non-stationary effects of diverse “mixed 
populations” in flood frequency analysis (Barth et al., 2017, 2018, 2019; Villarini et al., 2009). On the other 
hand, climate-driven changes in flooding have not been widely observed (Archfield et al., 2016; Do et al., 2017; 
Hall et al., 2014; Hodgkins et al., 2017; Lins & Slack, 1999), and in general, there is no consensus as to whether 
floods are changing in response to precipitation changes (Sharma et al., 2018). While there is an expectation, 
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based on the first principle, that flood dates in snow-affected river basins should shift earlier in the year (Bindoff 
et al., 2013), the later shift of flood timing is also observed in southern Australia and part of the Europe (Bloschl 
et al., 2017; Wasko et al., 2020).

A primary challenge in understanding how climate change impacts flood frequency, magnitude, and timing is 
posed by the complex interactions among the hydrometeorological and physiographic factors that affect floods 
(B Merz et al., 2012; Sharma et al., 2018). While various studies have shown that flood responses to climate 
change are ultimately determined by changes to their hydrometeorological drivers (such as extreme rainfall 
(Mass et al., 2011; Wasko & Sharma, 2015), snowmelt (Dettinger & Cayan, 1995), or rain-on-snow (Freudiger 
et al., 2014); these changes are caused by different meteorological processes. For example, convective rainfall, 
a major contributor to flash floods, is particularly sensitive to warming, as it is produced by the upward motion 
of warm moist air locally. Convective rainfall rates have been observed to increase by as much as 14% °C−1, 
double the 7% °C−1 increase in precipitable water expected from the Clausius–Clapeyron relation, due to in-
creasing water vapor with temperature and enhanced latent heat release (Berg et al., 2013; Lenderink & Van 
Meijgaard, 2008). Contrastingly, large-scale rainfall events caused by atmospheric rivers (ARs) and monsoons 
are related to moisture transport from remote tropical oceans. ARs are found (and projected) to be more frequent 
and more extreme due to increased water vapor transport and thermal fluxes (Gershunov et al., 2017; Huang 
et al., 2020; Ralph et al., 2020). All these hydrometeorological drivers affect extreme rainfall and snow events 
and thus flooding in different ways.

While numerous studies have explored how rainfall and snow regime changes affect floods (Archfield et al., 2016; 
Do et al., 2017; Wasko et al., 2020; Wasko & Sharma, 2017), it is not well understood how changes in flood char-
acteristics (frequency, magnitude, and timing) are linked to flood generating mechanisms. Previous hydrological 
research has generally focused on specific flood events, with area and event-specific characterization of hydro-
meteorological variables and physiographic factors (Bloschl et al., 2013; Ralph et al., 2006). Thus, it is difficult 
to apply the conclusions of these studies to other river basins or to make inferences at the regional scale. While 
a few studies have explored changes of certain types of floods throughout the conterminous United States (Barth 
et al., 2017; Davenport et al., 2020; Dethier et al., 2020; Dudley et al., 2017) there has to date not been a cohesive 
interpretation of how different meteorological and land surface processes produce floods at the regional scale, 
and over the W-US in particular. Recently, some studies have investigated regional patterns of flood controlling 
processes and their temporal variability (Berghuijs et al., 2016; R Merz et al., 2020; Sikorska et al., 2015; Stein 
et al., 2020; Tarasova, Basso, & Merz, 2020; Tarasova, Basso, Wendi, et al., 2020; Tarouilly et al., 2021; W Yang 
et al., 2020). These studies categorize flood-generating rainfall using rainfall characteristics, for example, wheth-
er it is “short duration rain”, “long duration rain”, or “rainfall excess” (as compared to available soil moisture 
storage capacity). We take a somewhat different approach and classify flood-generating processes based on the 
physical processes that control precipitation or (in the case of snowmelt) moisture supply to the soil column. As 
noted above, precipitation caused by different meteorological processes responds to climate change differently, 
therefore, investigating historical changes of floods driven by different types of rainfall can help to understand the 
connection between large-scale hydroclimatic changes and changes in flooding, if and where they exist.

With this motivation, we develop a process-based flood classification method based on the meteorological pro-
cesses that produce extreme precipitation and snowmelt events. We apply our classification scheme to the con-
terminous U.S. west of the Continental Divide (W-US) to categorize floods from 1960 to 2018 into one of six 
flood generating mechanisms (FGMs). We identify the dominant FGMs for 119 U.S. Geological Survey (USGS) 
stream gages and characterize changes in flood frequency, magnitude, and timing for each FGM. Our results 
provide new insights into how FGMs vary spatially and how floods of different FGMs have changed over the last 
six decades across the W-US.

2.  Methods
2.1.  Data

We used stream gages within the W-US from the USGS GAGES II reference database (Falcone,  2011). We 
removed stations with more than 20% missing data during 1960–2018 and with evidence of unreported up-
stream regulation such as reservoirs and diversions (Text S1 in the Supporting Information S1). This resulted in 
a total of 119 gages (Table S1 in the Supporting Information S1). We used daily mean streamflow (rather than 
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instantaneous peaks) due to data availability and length of records (Text S1 in the Supporting Information S1) 
similar to Archfield et al. (2016) and Berghuijs et al. (2016).

For each stream gauge, we used both the annual maximum series (AMS) and peaks over threshold (POT) for each 
water year (October-September) to represent flood events. For AMS we chose the floods with the largest daily 
discharge in each year. For POT, we set the threshold to ensure that two flood peaks per year were selected on 
average. We also select the upper-tail events (roughly the 10-year event) to focus on extreme floods (Text S1 in 
the Supporting Information S1). We then identified the FGMs for each AMS and POT event using observed and 
estimated hydroclimatic variables with a daily time step, including precipitation, surface air temperature, snow 
water equivalent (SWE), and snowmelt. We used the gridded precipitation and air temperature from observations 
produced by Livneh et al. (2015). The snow variables are output from the 1/16th degree spatial resolution Varia-
ble Infiltration Capacity (VIC) hydrology model run included in the Livneh et al. (2015) data set. The VIC model 
output was extensively evaluated and was shown to consistently reproduce observed SWE across the W-US (Ban 
et al., 2020; Li et al., 2019). We used the area-weighted mean of each hydroclimatic variable over the drainage 
area of the 119 basins to classify FGMs.

2.2.  Assigning FGMs to Flood Events

We took the perspective that floods are primarily a response to intense moisture supply to the soil column (Slater 
& Villarini, 2016). We did not consider the effect of frozen soil, as it is not considered to be a “hydrologically 
important” factor across our domain (Storey, 1955). Similar to studies that categorize floods regionally (Sikors-
ka et al., 2015; Tarasova, Basso, & Merz, 2020; Tarasova, Basso, Wendi, et al., 2020; W Yang et al., 2020), we 
first determined whether the moisture supply came from intense precipitation (referred to as rainfall hereafter) 
or snowmelt via a decision tree (Figure 1a). When substantial rain falls on a preexisting snowpack, snowmelt is 
induced by latent heating (augmented by longwave radiation) which directs moisture to the soil column, known 
as rain-on-snow (ROS) event (McCabe et al., 2007). We created a separate category for ROS floods which typi-
cally have a mixed moisture supply from rainfall and snowmelt (Figure 1a). For a flood event to be classified as 
ROS-related, we required that (a) the snowpack was isothermal at 0°C, (b) at least 25 mm day−1 of rainfall fell 
on a snowpack with at least 10 mm SWE, and (c) that ROS-related snowmelt made up at least 25% of the sum of 
the rainfall and snowmelt for the day (Li et al., 2019; Musselman et al., 2018; Text S2 in the Supporting Infor-
mation S1). We classified other floods as snowmelt-driven (mostly by net radiation in spring or early summer) if 
snowmelt contributed more than 50% of the AMS flood daily discharge (magsnowmelt ≥ 0.5):

magsnowmelt =
snowmelt

snowmelt + rainfall
�

We used basin-averaged snowmelt and rainfall from Livneh-VIC model outputs, which have been shown to cap-
ture the signatures of SWE and streamflow (Li et al., 2019). We defined rainfall-driven floods as those that are 
not snowmelt driven (magsnowmelt < 0.5).

We further partitioned rainfall-driven floods into convective (monsoons and non-monsoon convective) and large-
scale frontal storms (AR and non-AR; Houze, 2014; Figure 1a). Convective storms mostly occur in the inte-
rior W-US and are produced by the mesoscale convective systems (MCS). We identified MCS events using 
the NOAA-CIRES CAPE data set (Compo et al., 2011), in conjunction with the gridded rainfall from Livneh-
VIC. We chose 500 J kg−1 CAPE as the threshold for identifying MCS events (Holley et al., 2014; Kahraman 
et al., 2017). We partitioned convective storms occurring during the NAM season in the southwestern U.S. as 
monsoons. We defined the onset of the NAM for each station as the first three consecutive days of rainfall that 
exceeded 0.5 mm day−1 after July 1st (Higgins et al., 1999). We assumed that convective events occurring in the 
Southwest after the NAM onset through September 30th were monsoon related (L Yang et al., 2019). Frontal 
storms generally have longer durations, weaker atmospheric instability, and lower rainfall intensities than con-
vective storms (Anagnostou, 2004). We classified non-convective rainfall-dominant floods as frontal storms (AR 
and non-AR related). We identified AR events using the intersection of AR events from Guan and Waliser (2015) 
and precipitation events on flood days, that is, floods that occur during AR days are labeled as AR driven. We 
classified the remaining frontal storms as non-AR.
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In summary, we analyzed daily streamflow from 1960 to 2018 across the W-US. For each gauge, we applied the 
decision tree (Figure 1a) to categorize each flood event into one of the six FGMs: ROS, radiation-driven snow-
melt, monsoon convective storms (hereafter, monsoon), non-monsoon convective storms (hereafter convective 

Figure 1.  (a) Decision tree to determine the flood generating mechanisms (FGMs) for each flood event at 119 basins. 
The table indicates the frequency and magnitude contribution of flood generating mechanisms (FGMs) among the annual 
maximum series (AMS) over all events during 1960–2018; (b) Dominant FGM for each basin based on the AMS during 
1960–2018 (c–d) Trends of AMS magnitude (c) and timing (d) from 1960 to 2018. Filled dots indicate statistically significant 
trends with p < 0.05 while open squares indicate trends with p > 0.05. The red color in (c) indicates decreasing flood 
magnitude while the red color in (d) indicates change toward earlier floods; (e) The number of basins with statistically 
significant (p < 0.05) increasing trends and decreasing trends dominated by each FGM. The results for POT are qualitatively 
similar to AMS and are shown in Supporting Information (Table S2 and Figure S1 in the Supporting Information S1).
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storms), frontal AR, and frontal non-AR. For each basin, we identified the dominant FGM as the FGM that oc-
curred most frequently (largest fraction).

2.3.  Frequency, Magnitude Contribution, and Timing of Each FGM

As we categorized each flood event into one of the six FGMs, we aggregated flood events caused by the same 
FGM and investigated the FGM's frequency, magnitude contribution, and timing across the W-US. We calculated 
the frequency of each FGM as the number of flood events associated with a specific FGM divided by the total 
number of flood events across the 119 basins over the 1960–2018 period. Similarly, we calculated the magnitude 
contribution as the daily maximum discharge for a specific FGM (at all sites) divided by the total runoff discharge 
at all sites for all FGMs during the same period. To investigate the changes in the FGMs' frequency and magni-
tude contribution with time, we calculated the frequency (magnitude contribution) of each FGM in a year and 
estimated the trends from 1960 to 2018. We further examined ROS frequency as a function of basin elevation (see 
Figure S5 in the Supporting Information S1).

For each FGM, we calculated the mean flood dates averaged over all events associated with that FGM in a year 
and estimated the trends of mean flood date for that FGM from 1960 to 2018. Since flood timing has large in-
ter-station differences, we use a representative flood date for each flood event, which is defined as the flood date 
for each event in the given FGM minus the mean flood date for that FGM and station.

2.4.  Trend Analysis

We used the Theil-Sen slope estimator (Sen, 1968; Theil, 1992) to estimate trends in AMS and POT magnitude 
and timing for each station as well as the trends in flood frequency, magnitude, and timing for each FGM across 
all stations. We used the modified Mann-Kendall test (Hamed & Rao, 1998; Mann, 1945) to determine the trends' 
statistical significance. Additionally, we evaluated the overall significance across the entire W-US and hydrologic 
region level, referred to as field significance (Livezey & Chen, 1983) of trends across all stations. Local signif-
icance (via the Mann-Kendall test) determines whether each local null hypothesis is true at a given significance 
level; while field significance essentially determines whether multiple rejections of the null hypothesis at the 
local level (in our case, the significant flood trends at multiple stations) might be a manifestation of spatially 
correlated noise. The field significance tests were conducted following Douglas et al. (2000) to account for the 
spatial cross-correlation of streamflow (Text S3 in the Supporting Information S1).

3.  Results
3.1.  Flood Generating Mechanisms (FGMs)

The table within Figure 1a shows the frequency and magnitude contribution of each FGM (i.e., the fractions of all 
AMS events and total flood discharge, respectively). Of all events across the 119 USGS gages from 1960 to 2018, 
radiation-driven snowmelt is the most frequently occurring FGM (39.9%) and the second-largest contributor to 
the AMS magnitude (30.4%). ROS floods account for about 19.8% by frequency and 32.1% by magnitude of all 
floods. Frontal AR and non-AR account for 14% and 15.6% by frequency and 23.1% and 9.2% by magnitude, 
respectively. Monsoon and convective storms combined contribute 10.8% by frequency and an even smaller 
percentage (5.2%) by magnitude of all events. The FGM contributions using POT are similar to the AMS con-
tributions (see Supporting Information S1). In comparison to AMS, frequency and magnitude contributions of 
snowmelt, frontal AR, and convective-related floods are slightly larger than for POT with differences less than 
2%; while ROS, frontal non-AR, and monsoon-driven floods are slightly smaller for POT (Table S1 in the Sup-
porting Information S1). For upper-tail events, ROS becomes the most important FGM as compared to all AMS 
events, contributing as much as snowmelt for frequency (33% for both ROS and snowmelt) and more than any 
other FGM for flood magnitude (44% for ROS).

The dominant FGMs show strong regional patterns, with frontal storms prevalent in basins along the coastal 
portion of our domain and radiation-driven snowmelt events dominating the interior (Figure 1b). AR-dominant 
floods occur along the coastal portion of the Pacific Northwest (Figure 1b, shown in more detail in Figure S2 
in the Supporting Information S1) and are often associated with Pacific storm tracks (Ralph & Dettinger, 2011; 
Stohl et al., 2008). ROS is the dominant FGM for basins in coastal maritime climates, for example, basins along 



Geophysical Research Letters

HUANG ET AL.

10.1029/2021GL097022

6 of 11

the western side of the Cascade Mountains. We note that our ROS category in many cases is associated with win-
ter storms that otherwise would be classified as frontal AR and non-AR. Floods driven by AR storms dominate in 
the Pacific Northwest and Klamath Mountains (Northern California) and floods driven by frontal non-AR dom-
inate parts of the Great Basin and Southwest. For stations in the Pacific Northwest and Northern California, the 
dominant FGM accounts for 30%–40% of total events (Figure S3a in the Supporting Information S1) with floods 
in those areas caused by a mixture of frontal AR, frontal non-AR, and ROS. Radiation-driven snowmelt events 
account for more than 60% of AMS for most basins in the interior (Figure S3a in the Supporting Information S1). 
This is the primary FGM in basins east of the Cascade Mountains east to Wyoming, in the Sierra Nevada, and 
sporadically throughout mountain ranges of the Southwest (Figure 1b). Convective storms are the dominant FGM 
in Southern California and Arizona where many stations have secondary FGMs, (e.g., monsoons; see Figure S2 
in the Supporting Information S1). Monsoon-driven floods are concentrated in Southern Arizona (Figure S2c in 
the Supporting Information S1), where floods mostly occur during the NAM season in late summer. The spatial 
distribution of dominant FGMs for POT floods are highly consistent with that for AMS floods (Figure S1 in the 
Supporting Information S1).

Our classification corroborates results from previous studies, which show that ARs dominate flood events in the 
Pacific Northwest and coastal northern California, and that ROS is the dominant FGM throughout the Washing-
ton and Oregon Cascades (Barth et al., 2017; Konrad & Dettinger, 2017; Marks et al., 1998; McCabe et al., 2007; 
Ralph et al., 2006, 2011). For 70% of basins across our study domain, the dominant FGM accounts for more than 
50% of all flood events (Figure S3b in the Supporting Information S1). We note that certain regions, such as the 
Southwest, have relatively sparse gage distributions. Our study nonetheless shows that FGMs have fairly well-de-
fined domains relative to their moisture supply. These results should be (at least in a general sense) applicable to 
regions within the domain where the station density is modest. We next examine how flood risk associated with 
the FGMs has varied in space and time during our study period.

3.2.  Trends in Flood Magnitude and Timing

We find that only eight of the 119 stations (6.7%) have statistically significant trends (p < 0.05; Figure 1e) in 
flood magnitude. Of these, four stations within the Pacific Northwest have statistically significantly increasing 
trends, and four stations (located in Arizona, California, Nevada, and Oregon) have statistically significantly 
decreasing trends. In contrast, the corresponding basin-averaged precipitation from Livneh shows statistically 
significant uptrends in seven stations (mostly in Washington) and significant downtrends in five stations (in 
Northern California and Oregon; Figure S4a in the Supporting Information S1). Despite statistically significant 
precipitation increases in Washington, the corresponding changes in flooding in that area were not statistically 
significant. One possible explanation may be antecedent soil moisture which can modulate the effects of in-
creasing rainfall (Ivancic & Shaw, 2015). Temperature increases which drive increases in rainfall also decrease 
soil moisture. This increases the required incident rainfall for flooding, so that storms that occurred in the early 
record that might have produced flooding might not have produced floods in the later record (even with increased 
precipitation intensities; Cao et al., 2020). Throughout the W-US basins or at hydrologic region level, changes in 
AMS magnitude have weak geographic cohesion and the trends are not field significant (p = 0.05).

We also investigate changes in the timing of AMS for each basin, which show an overall earlier shift across the 
W-US (Figure 1d), especially in radiation-snowmelt dominant basins. 16 out of 119 (13.4%) basins show signif-
icant shifts toward earlier dates, while one basin has a significant shift toward later dates (Figure 1e). The trends 
in AMS timing are not field-significant (at p = 0.05) across the W-US or at hydrologic region level. Among the 
16 basins with an earlier shift, 13 are dominated by radiation-driven snowmelt. The flood timing changes in these 
basins are associated with an earlier onset of springtime snowmelt due to increasing temperatures (Figure S4b 
in the Supporting Information S1). Generally, we find that only a few stations exhibit significant trends in AMS 
magnitude and timing despite widespread and significant changes in atmospheric forcing -- for example, rainfall 
increases (in the Pacific Northwest), and generally warming air temperature throughout W-US. An analysis of 
POT floods (Figure S1b in the Supporting Information S1) leads to a similar conclusion as AMS.

Our basin-scale analyses indicate at most tenuous links between climate change and flooding (aside from the 
snowmelt FGM) suggesting that other factors may play a role, such as rainfall phase and duration, antecedent 
soil moisture, and catchment geometry (Wasko & Sharma, 2015). Further research will be necessary to quantify 
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the influence of catchment conditions on the climate change-extreme runoff 
relationship at the regional, continental, and global scales.

3.3.  Trends in Flood Frequency, Magnitude, and Timing by FGM

We investigated changes in the frequency, magnitude, and timing of floods 
for each FGM across the W-US. Among the six FGMs, only two had signif-
icant changes (p < 0.05) over our study period (Figure 2a). The frequency 
of ROS-induced floods significantly decreased by 0.0015 years−1 (p < 0.01) 
during 1960–2018, which is equivalent to a reduction of about 10 events 
during our study period across the W-US. The decrease in ROS-induced 
flood frequency is comes mostly from low-to-mid elevation basins (lower 
than 1,500 m), whereas there are no statistically significant trends in ROS 
floods for the highest elevation basins (Figure S5 in the Supporting Infor-
mation S1). The magnitude contribution of ROS-induced floods has experi-
enced an even larger decrease by 0.0027 years−1 with p < 0.05 (Figure 2b). 
These decreases are likely related to reduced snowpack, which is sensitive to 
increasing temperatures across the mountainous W-US (McCabe et al., 2007; 
Musselman et al., 2018). Decreasing ROS-driven flood frequency and mag-
nitude have also been found in Western Europe at lower elevations (Fischer 
& Schumann, 2020; Fischer et al., 2019; Freudiger et al., 2014). Interestingly, 
these results contrast with those found by Dethier et al. (2020), who observed 
statistically significant increases in annual flood frequency as well as early 
snowpack depletion. Furthermore, snowmelt-driven floods have been found 
to be transforming to ROS-driven floods in Eastern Europe, leading to in-
creases in ROS flood frequency there (Kemter et al., 2020).

Convective-storm related floods have a statistically significant positive trend 
(p < 0.05) in both frequency and magnitude contribution (Figure 2), although 
they account for only about 8% of flood frequency and 5% of flood discharge, 
respectively (Figure 1a). The increase in convective storm-related floods may 
be related to increases in CAPE throughout the Southwest, which makes the 
environment more favorable for convection and allows MCSs to become larg-
er (Feng et al., 2016; Prein et al., 2017). Changes in convective-driven floods 
have not been widely studied globally. Still, our results corroborate with Lla-

sat et al. (2016, 2021) who showed the positive trends in flash floods in Mediterranean Spain partially related 
to increasing convective precipitations. Aside from increases in convective-storm related floods, we also find a 
slight increase in AR-driven flood frequency, which however is only weakly significant (p = 0.08) in comparison 
to ROS and convective storm floods. We do not identify statistically significant long-term trends in frequency or 
intensity of other FGMs.

FGM trends are similar for POT events (Table S3 in the Supporting Information  S1), where we find signif-
icantly decreasing trends (p  <  0.05) in ROS flood frequency (−0.0008  years−1) and magnitude contribution 
(−0.0022 years−1). Convective storm floods showed a significant increasing trend (p < 0.05) in magnitude con-
tribution, but the positive trend in frequency is less significant in POT events (p = 0.07) than in AMS. We find a 
statistically significant increase (p = 0.04) in the frequency of AR-related floods in the POT series, which is more 
significant than the AMS series in Figure 2b. For the upper tail events, we do not observe statistically significant 
changes in frequency or magnitude contribution of any FGM, which may be due to the small number of events 
included (typically 10 events per year across W-US).

Trends in flood timing by FGM are shown in Figure 3. Floods dominated by radiation snowmelt have a signifi-
cant negative trend in flood timing of −0.16 days yr−1, equivalent to an earlier shift on average by about nine days 
from 1960 to 2018. The earlier trends in snowmelt floods are caused by diminishing winter snow accumulations 
and warmer temperatures during the melting season (Figure S4b in the Supporting Information S1), as observed 
in the W-US (Dudley et al., 2017; Stewart et al., 2005) and northeastern Europe (Bloschl et al., 2017). For the 
remaining FGMs, we do not identify any statistically significant trends in flood timing.

Figure 2.  Trends in the (a) frequency and (b) magnitude contribution of six 
flood generating mechanisms (FGMs) for the W-US basins over the period 
1960–2018 calculated by Theil-Sen slope (yr−1). Asterisk indicates that trends 
are significant at the 0.05 level in the Mann-Kendall test and “s” represents 
the slope of the Theil-Sen test. For each year, the frequency of an FGM is 
calculated using flood counts associated with the FGM divided by the total 
flood counts; the magnitude contribution of an FGM is calculated using the 
daily maximum discharge for all events associated with the FGM divided by 
the total daily maximum discharge among all basins.
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4.  Conclusions
Throughout the W-US, radiation-driven snowmelt is the dominant contributor to flood frequency, while frontal 
non-AR rainfall is the greatest contributor to flood magnitudes. Floods throughout the coastal W-US are domi-
nated by AR events, a substantial portion of which are ROS-related. Floods in the central and northern interior of 
W-US are mostly associated with radiation-driven snowmelt. Monsoon and convective storms contribute a much 
smaller fraction of floods in the W-US interior. Although pronounced temperature increases have changed the 
intensity, as well as the spatial and temporal variability of precipitation extremes across the region, changes in 
flood frequency, magnitude, and timing are more complex:

1.	 �ROS-related flood frequency and magnitudes have decreased significantly across the W-US
2.	 �The timing of floods caused by radiation snowmelt has shifted earlier, consistent with earlier snowmelt onset 

corresponding to widespread warming in the mountainous W-US
3.	 �There has been a statistically significant increase in convective storm-related flood frequency and magnitudes, 

mostly associated with floods occurring in the Southwest
4.	 �Aside from above changes, the magnitude, frequency, and timing of floods across the western U.S. not asso-

ciated with snow processes have been relatively stable over the last 60 years

The trends we observe in the frequency of ROS and the timing of radiation snowmelt-driven floods are likely 
to continue in a warming climate as they are strongly temperature-related. Likewise, the changes in frequency 
and magnitude of convective storm-related floods may well be temperature-related in which case they are likely 
to continue to increase in the future. While convective storm-related floods account for a small portion of the 
total flood counts and flood discharge across W-US, they could have important implications in the Southwest, 
especially for flash floods.

It is worth noting that the spatial scale of convective storms generally is smaller than that of winter storms, or 
the SWE and net radiation anomalies that drive spring snowmelt floods. Accordingly, the linkage between flood 
forcing (intense rainfall) and response tends to be more direct with convective storms, when compared with other 
FGMs. In this respect, changes in convective storm-associated flooding we observe may represent the tip of the 
iceberg, so to speak. Further study is needed as the USGS stream gage network used in this study does not include 

Figure 3.  Trend magnitudes (day yr−1) of mean flood timing for each flood generating mechanisms (FGM) across W-US. 
For each FGM, the Gy bar indicates 0.1 and 0.9 quantiles of flood timing, and the color-coded dots indicate the mean flood 
timing averaged over all events associated with that FGM in each year. The color-coded lines indicate flood counts caused by 
each FGM in a year. Trends were calculated using the Theil-Sen slope and “s” represents the trend magnitude of Theil-Sen 
slope. The asterisk indicates that the trend is significant at the 0.05 level in the Mann-Kendall test.
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many sites with drainage areas that are comparable to the spatial scales of convective storms, and hence results 
may well under-represent this FGM. The prognosis for future alterations to the magnitude of changes for FGM 
categories other than convective and snow-related (ROS and radiation snowmelt) is less clear, as they result from 
complicated interactions of rainfall extremes (which are likely to increase), antecedent soil moisture (likely to 
decrease), storm timing (direction of changes not clear) as well as other factors such as storm extent.

Data Availability Statement
NOAA-CIRES CAPE data set are from the NOAA/OAR/ESRL PSL Web site at https://psl.noaa.gov/data/grid-
ded/data.20thC_ReanV2c.monolevel.html; The daily streamflow from USGS GAGES II reference database is 
available at https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml. We uploaded the data 
used in this paper on https://doi.org/10.5281/zenodo.5678009.
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