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Abstract 

Predictions of drought onset and termination at subseasonal (from two weeks to one month) lead 

times could provide a foundation for more effective and proactive drought management.  We 

used reforecasts archived in NOAA’s Subseasonal Experiment (SubX) to force the Noah Multi-

parameterization (Noah-MP), which produced forecasts of soil moisture from which we 

identified drought levels D0-D4. We evaluated forecast skill of major and more modest droughts, 

with leads from one to four weeks, and with particular attention to drought termination and 

onset. We find usable drought termination and onset forecast skill at leads one and two weeks for 

major D0 -D2 droughts; and limited skill at week three for major D0-D1 droughts, with 

essentially no skill at week four regardless of drought severity. Furthermore, for both major and 

more modest droughts, we find limited skill or no skill for D3 -D4 droughts. We find that skill is 

generally higher for drought termination than for onset for all drought events. We also find that 

drought prediction skill generally decreases from north to south for all drought events. 
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1.0 Introduction 

Drought is among the most damaging, and least understood, of all weather and climate 

hazards (Pulwarty and Sivakumar, 2014). Droughts are usually incremental and can span from a 

few weeks to decades temporally and from a few hundred 𝑘𝑚2 to hundreds of thousands of  𝑘𝑚2

spatially (Pendergrass et al., 2020). Droughts’ creeping development is often neglected in the 

early stages and the changes accumulate and trigger more severe direct or indirect impacts. 

Eventually, the unattended creeping development leads to urgent crises that are more costly to 

deal with (Glantz, 2004). The impacts can persist even after the drought itself ends. Therefore, 

drought is often a ‘hidden’ natural disaster and its risk is underestimated (UNDRR, 2019, 

Pendergrass et al., 2020). 

During the past decade, nearly all of the contiguous United States (CONUS) from 

Colorado to the Pacific coast has suffered from moderate to exceptional droughts (Cook, et al 

2018). This includes the continuation of multiyear events (2009-2011 and 2013-2016) in 

California (Griffin and Anchukaitis 2014; Seager et al. 2015; Williams et al. 2015) and the U.S. 

Southwest (Delworth et al. 2015; Seager and Hoerling 2014), and the emergence of significant 

drought conditions across the Pacific Northwest (Oregon and Washington) in 2015 (Mote et al. 

2016). Drought episodes were especially severe in the coastal Western U.S.  (including 

California, Oregon, and Washington). The prolonged severe droughts have stressed water 

resources management at the regional level (Mann and Gleick, 2015; Engström et al 2020). 

As the climate warms, an argument has evolved as to whether drought duration and 

intensity are increasing (Christensen et al 2007; Seneviratne et al 2012; Pendergrass et al 2020). 

If so, more foresighted responses that adopt proactive risk mitigation strategies may be necessary 

(Pulwarty and Verdin, 2013; Wilhite et al.,2014). Drought forecast systems in this context would 

be especially useful (Arsenault et al 2020; Carrão et al 2018; Hao et al 2018). Predictions of 

drought onset and termination (although evasive to date) in addition to other drought 

characteristics could provide a foundation for effective proactive drought management. 

Seasonal climate forecast systems including the North American Multi-Model Ensemble 

(NMME) project (Kirtman et al., 2014; Wanders et al.,2017) consistently predicted a false wet 

2015/2016 winter and forecasted a false signal for California drought termination. In contrast, 
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the forecasts and reforecasts from the ECMWF and NCEP CFSv2 models, at the subseasonal-to-

seasonal (S2S) (weeks to a month or two) time scale, were able to predict the correct sign of 

precipitation anomalies (Wang et al., 2017).  Wang et al. (2017) shows that what is unpredictable 

at the seasonal time scale can become predictable at the subseasonal time scale. Recently there 

has been surging interest in ‘flash droughts’, which are characterized by their sudden onset and 

rapid intensification and severe impacts (Otkin et al.,2018). While many drought prediction 

products are updated at monthly time scales, these predictions are of limited value for flash 

droughts which develop on shorter time scales (Pendergrass et al 2020), nor are they useful in 

determining, for instance, whether individual storms (which can be forecast with potentially 

usable accuracy at lead times of one to several weeks) will terminate a drought. This further 

motivates the need for incorporation of S2S forecasts into drought monitoring and prediction 

systems. Our study aims to fill a gap in the literature on drought forecast skill to incorporate 

subseasonal forecasts. Like seasonal drought prediction systems, such as the NOAA Climate 

Prediction Center’s (CPC) seasonal drought outlook, subseasonal drought forecasts derive their 

skill from knowledge of weather/climate information and initial hydrologic conditions (IHCs) at 

the onset of the forecast period (Shukla et al 2012). While subseasonal precipitation forecast skill 

is generally lower than the skill of forecasts for temperature for the same location and lead time 

(Monhart et al 2018; Pegion et al 2019; Cao et al 2021), these studies show that there nonetheless 

is potentially usable precipitation forecast skill to leads of 2-3 weeks. Furthermore, Land Surface 

Models (LSMs) provide estimates of IHCs that are critical for drought forecasts, particularly 

when (as in the case of agricultural drought) soil moisture is the metric used to identify droughts 

(Shukla and Lettenmaier, 2011; Shukla et al 2012).  In this respect, the work we report here 

extends this earlier work to utilize S2S forecasts which better exploit precipitation (and hence, 

soil moisture) forecast skill at lead times of one to several weeks. 

The subseasonal forecasting time scale (the terms subseasonal and Subseasonal-to-

Seasonal (S2S) are used interchangeably here) is typically defined by lead times ranging from 

two weeks to one (or two) months. This is a critical lead time window for proactive disaster 

mitigation efforts such as water resource management for drought mitigation (Mariotti et 

al.,2018; Vitart and Robertson, 2018). However, research on hydrological application of 

forecasts has not paid much attention to subseasonal lead times until very recently due to a lack 

of subseasonal meteorological forecast data bases (Vitart et al., 2017). Multimodel ensemble 
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approaches have proved to be a successful tool for improving forecast quality for weather and 

seasonal predictions (Krishnamurti et al., 1999; Krishnamurti et al., 2000). They have the 

advantage of exploiting complementary skill from different models and allow for better 

estimation of forecast uncertainty (Hao et al.,2018).  

Thanks to joint efforts between the weather and climate communities, several 

subseasonal forecast databases have been developed to bridge the weather-climate prediction gap 

in the S2S range (Mariotti et al., 2018; Merryfield et al., 2020). These include the World 

Weather Research Programme (WWRP)/World Climate Research Program (WCRP) S2S 

Prediction Project (Vitart et al., 2017) and the NOAA/Climate Testbed Subseasonal Experiment 

(SubX) project (Pegion et al., 2019). Recent studies have found that the prediction skill for 

precipitation and the application to streamflow forecasts of the WWRP/WCRP S2S database 

varied among predictor combinations, catchments and dates of prediction; and the skill is 

frequently less than climatology beyond two weeks lead time (Lin et al.,2018; Pan et al.,2019; 

Schick et al.,2019).  

NOAA’s SubX project is different from the WWRP/WCRP reforecasts by including both 

operational and research models. Furthermore, it is available in near real-time (Pegion et al., 

2019). To our knowledge, little research has been done to evaluate the hydrological application 

of subseasonal forecasts based on the newly developed SubX dataset. A thorough investigation 

of the hydrological usefulness of subseasonal drought forecasts based on the SubX dataset could 

form the foundation of a proactive drought management system. 

SubX provides forecasts of climate variables like precipitation and temperature, but not 

all of them provide hydrologic variables like soil moisture and runoff.  However, hydrologic 

forecasts based on SubX can be produced by using the SubX precipitation (and other surface 

variables) forecasts to drive a land surface model (see e.g., Cao et al., 2021). Here, we drive 

hydrological forecasts from SubX with the Noah Multi-parameterization (Noah-MP, V4.0.1) 

(Niu et al., 2011). We adopted the WRF-HYDRO recommended physical options and details are 

in supplement Text S1. Noah-MP is a state-of-the-art LSM originally intended to be the land 

surface scheme in numerical weather prediction (NWP) models. It is currently used for 

physically based, spatially distributed hydrologic simulations within the construct of NOAA’s 
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National Water Model (NWM). Noah-MP extends the capabilities of the Noah LSM (Chen et al., 

1996; Chen and Dudhia, 2001) and incorporates multiple options for key land-atmosphere 

interaction processes, such as surface water infiltration, runoff, groundwater transfer, and 

channel routing (Niu et al., 2007; Niu et al., 2011). Noah-MP has been widely used for 

predicting seasonal climate, weather, droughts and floods within and beyond CONUS (Zheng et 

al., 2019).  

Given this background, our objectives here are to examine: 1) subseasonal forecast skill 

(at 1–4-week lead times) of drought onset and termination driven by downscaled SubX 

reforecasts in the coastal Western U.S.; 2) how forecast skill for drought onset and termination 

vary geographically and with lead times. To achieve these objectives, we first downscaled the 

SubX reforecasts to a finer spatial resolution (1/16 degree) from their coarse native resolution (1 

degree), in consideration of the high spatial resolution of our hydrological model. We then 

implemented the Noah-MP hydrology model over the coastal Western US using downscaled and 

bias-corrected SubX reforecasts as forcings. Based on the model outputs, we evaluated the 

SubX-based drought forecasts skill (All of the ‘‘forecasts’’ in this paper technically are 

reforecasts).  

2.0 Study Domain and Dataset 

2.1 Study Domain 

Our study domain is the coastal Western U.S., consisting of all of California (CA), as 

well as coastal Oregon (OR) and Washington (WA) (Figure 1).  
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Figure 1. Study domain, the coastal Western U.S.  

2.2 SubX Database 

We used six models from the SubX database with 30 ensemble members in total (Table 

1) over the reforecast period Jan 1999– Dec 2016. The initialization interval of each model is at 

least once a week and the lead time is at least 32 days. The temporal resolution of the SubX 

output is daily and the raw spatial resolution is 1°× 1°. We downscaled and bias corrected the 

SubX output to 1/16°× 1/16° as described in section 3.1. 
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Table 1. List of SubX models used in the research. Community column indicates target users for each 

model (SEAS for seasonal prediction community and NWP for numerical weather prediction community).  

Model Members Initialization 

Day 

Forecast 

Length 

(days) 

Community Reference(s) 

NCEP-CFSv2 4 W 45 SEAS Saha et al. (2014) 

GMAO-

GEOS_V2p1 

4 Varies 45 SEAS Koster et al. (2000), Molod et 

al. (2012), Reichle and Liu 

(2014), and Rienecker et al. 

(2008) 

RSMAS-CCSM4 3 Su 45 SEAS Infanti and Kirtman (2016) 

EMC-GEFS 11 W 35 NWP Zhou et al. (2016, 2017) and 

Zhu et al. (2018) 

ECCC-GEPS6 4 Th 32 NWP Lin et al. (2016) 

ESRL-FIMr1p1 4 W 32 NWP Sun et al. (2018a, b) 

 

3.0 Methods 

3.1 Downscaling and Bias Correction 

We downscaled the raw SubX output (forcings to Noah-MP) using a statistical 

downscaling method, bias correction and spatial downscaling (BCSD; Wood et al. 2004). We 

applied daily BCSD since it has been shown to be an effective approach for removing bias (e.g., 

Monhart et al. 2018; Baker et al. 2019, Cao et al. 2021) in atmospheric model output. By using 

this method, we constrained the precipitation temporal variability (wet/dry days) to be the same 

as in the raw data, which we view as desirable (in contrast to methods like localized constructed 

analogs (LOCA; Pierce et al. 2014) that attempt to reproduce realistic wet/dry sequences). We 

applied daily BCSD to precipitation, maximum daily temperature (Tmax), minimum daily 

temperature (Tmin), and wind speed following the steps in Cao et al (2021), which can be 

summarized as follows: (1) we applied spatial (bilinear) interpolation of the 1°× 1° daily SubX 

forecasts to 1/16°× 1/16°; (2) we bias corrected the outputs from step (1) by each grid point using 

the daily empirical quantile mapping (QM) method (Wood et al., 2002; Cao et al., 2021). The 

training dataset we used here is the gridded observation dataset of Livneh et al. (2013) (extended 

to 2018 as described in Su et al. (2021)). 
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3.2 Evaluation of SubX Precipitation and Temperature 

We evaluated SubX forecast skill for precipitation and temperature at different lead times 

before and after bias correction with BCSD. The skill of forecasts at S2S time scales is typically 

evaluated in terms of anomalies or differences from the climatology. Following Pegion et al. 

(2019) and Cao et al (2021), we used the anomaly correlation coefficient (ACC; Wilks 2006). 

ACC provides information about how well the variability of the forecasted anomalies matches 

the observed variability.  It is calculated as the temporal correlation of anomalies at each grid cell 

(details of the ACC calculation procedures are as in Cao et al (2021)). To evaluate the 

performance of downscaling methods, we also compared the relative biases for both precipitation 

and temperature before and after the implementation of BCSD.  

3.3 Hydrological Model implementation 

We implemented Noah-MP over the coastal Western U.S., which consists of all of CA, as 

well as coastal OR and WA.  Noah-MP requires meteorological forcings including specific 

humidity, surface pressure, downward solar and longwave radiation in addition to precipitation, 

wind speed, air temperature. We calculated the first four variables based on the Mountain 

Microclimate Simulation Model (MTCLIM) algorithms (implemented as in Bohn et al. 2013; 

Cao et al.,2021; and Su et al., 2021) and disaggregated the daily output to 3-hourly (Liang et al., 

1994; Bennett et al., 2020). 

The prediction skill of subseasonal hydrological forecasts depends on both the IHCs at 

the time of forecast and the accuracy of forecasts of hydrologic model forcings during the 

forecast period (Arnal et al., 2017; Li et al., 2009). Before we implemented Noah-MP using 

SubX forcings, we first ran the model using the Livneh et al. (2013) forcings for the period 

1951–2016 and repeated twice. We cropped out the 1961-2016 period from the second repetition 

to serve as a baseline run and also to provide assumed perfect IHCs at forecast initiation time for 

forecasts made over the period 1999-2016. The initialization interval for most SubX models is 

seven days, but different models have different initiation days. We output baseline run model 

states for all the SubX initiation dates and these states served as the IHCs. For each SubX 

ensemble member and each identified initialization, we ran Noah-MP for 28 days (4-week 

forecast).  
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To assess the hydrological model dependency and the effects of calibration, we also 

implemented Variable Infiltration Capacity (VIC) V4.1.2.d (Liang et al., 1994) before and after 

calibration (details in supplement Text S2).  Overall, those results show that, while there are 

some differences between models (Noah-MP and VIC) and VIC before and after calibration, our 

results are not strongly dependent on model and calibration.  This is consistent with Mo et al 

(2012) who found that differences in soil moisture percentiles during drought periods are modest 

among different LSMs.  

3.4 Assessment of drought forecast skill  

3.4.1 Identification of Drought Events 

Soil moisture is an important drought indicator, especially for agricultural droughts. We 

archived the total column soil moisture and calculated the soil moisture percentile (relative to 

that grid cell’s and that week’s total column soil moisture history of all the ensembles of the 

model) to identify drought events equivalent to D0 to D4 droughts as used by the U.S. Drought 

Monitor (https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx) (see also Table 2). 

Table 2 Drought categories, descriptions and percentiles.   

Category D0 D1 D2 D3 D4 

Description Abnormally 

Dry 

Moderate 

Drought 

Severe 

Drought 

Extreme 

Drought 

Exceptional 

Drought 

Percentiles <30 <20 <10 <5 <3 

 

3.4.2  Evaluation Skill 

We evaluated the probabilistic drought forecast skill of all six SubX models using 30 

ensemble members. The evaluation metrics we used include 1) debiased Brier skill score (Weigel 

et al. 2007); 2) Bias score (BS), Probability of detection (POD), False alarm ratio (FAR), 

Equitable threat score (ETS) and Heidke skill score (HSS). We discuss these skill measures and 

our applications briefly below. 

1)   BSS 
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The Brier Skill Score (Wilks, 2006) is widely used to measure the mean squared error of 

probability forecasts for binary events.  It is, however, sensitive to small ensemble sizes. To 

overcome this issue, we used the debiased Brier skill score (BSS) which incorporates a 

correction term in the denominator of the Brier Score (DeFlorio et al.,2019). BSS is calculated as 

follows: 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓+𝐷
,                                                                            (1) 

𝐵𝑆 =
1

𝑁
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑁
𝑖=1 ,                                                                      (2) 

𝐵𝑆𝑟𝑒𝑓 =
1

𝑁
∑ (𝑃𝑐𝑙𝑖𝑚 − 𝑂𝑖)

2𝑁
𝑖=1 ,                                                             (3) 

𝐷 =
1

𝑀
𝑃𝑐𝑙𝑖𝑚(1 − 𝑃𝑐𝑙𝑖𝑚),                                                                      (4) 

where 𝑃𝑖 is the forecast skill for drought onset/termination and is determined by the 

fraction of the ensemble members that predicted drought onset/termination for a single 

reforecast; 𝑂𝑖 shows whether the observed drought onset/termination occurs (1 if yes, 0 if no); N 

is the number of reforecast droughts for the grid cell/region (varies for each grid cell/region); M 

is the ensemble size (30 here); and Pclim is the probability of the reference climatology.  BSS 

ranges from negative infinity to one. Positive values indicate that the reforecast skill is higher 

than the climatological forecast skill. 

2) Contingency Table 

We evaluated the forecast of drought onset/termination, where a dichotomous forecast 

indicates whether an event will happen or not. To verify this type of forecast we start with a 

contingency table that shows the frequency of "yes" and "no" forecasts and occurrences. The 

four combinations of forecasts (yes or no) and observations (yes or no), are: 

     hit - event forecast to occur, and it did occur 

     miss - event forecast not to occur, but did occur 

     false alarm - event forecast to occur, but did not occur 
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     correct negative - event forecast not to occur, and did not occur 

     Table 3. Contingency Table 

 Observed 

Forecast Yes No Total 

Yes Hits False alarms Forecast Yes 

No Misses Correct Negatives Forecast No 

 Observed Yes Observed No  

 We calculated a variety of categorical statistics from the elements in the contingency 

table to describe particular aspects of forecast performance. 

3) Bias Score (BIAS) 

𝐵𝐼𝐴𝑆 =
ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
                                                      (5) 

Bias score indicates how the forecasted frequency of "yes" events compared to the 

observed frequency of "yes" events. It ranges from 0 to ∞ with 1 a perfect score. It indicates 

whether the forecast system tends to underforecast (BIAS<1) or overforecast (BIAS>1) events. It 

only measures relative frequencies and does not measure how well the forecast corresponds to 

the observations,  

4) Probability of detection (POD, also known as hit rate)  

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠
                                                                 (6) 

Probability of detection tells us what fraction of the observed "yes" events were correctly 

forecasted. It ranges from 0 to 1 with 1 a perfect score. POD is sensitive to the climatological 

frequency of the event and is most informative for rare events.  

5) False alarm ratio (FAR) 
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𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
                                                          (7) 

 FAR gives the fraction of predicted "yes" events that actually did not occur (i.e., were 

false alarms). It ranges from 0 to 1 with 0 a perfect score. FAR is sensitive to false alarms but 

ignores misses and should be used in conjunction with POD (above). 

6) Equitable threat score (ETS, also known as Gilbert skill score) 

                          𝐸𝑇𝑆 =
ℎ𝑖𝑡𝑠−ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠−ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚
                                  (8) 

Where              ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚 =
(ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠)(ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)

𝑡𝑜𝑡𝑎𝑙
                                          (9) 

  ETS measures the fraction of observed events that were correctly predicted, adjusted for 

hits associated with random chance (for example, it is easier to correctly forecast precipitation 

occurrence in a wet climate than in a dry climate). It ranges from -1/3 to 1; 0 indicates no skill 

and 1 is a perfect score. ETS is often used in the verification of precipitation in NWP models 

because its "equitability" allows scores to be compared more fairly across different regimes.  

7) Heidke skill score (HSS, also known as Cohen's k) 

          𝐻𝑆𝑆 =
(ℎ𝑖𝑡𝑠+𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)−(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚

𝑁−(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚
                     (10) 

where                                 (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚 =
1

𝑁
[𝐴 + 𝐵]                  

𝐴 = (ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠)(ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)  

𝐵 = (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠)(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) 

𝑁 = ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

HSS measures the fraction of correct forecasts after eliminating those forecasts which 

could be correct due purely to random chance. It ranges from -1 to 1; 0 indicates no skill and 1 is 

a perfect score. HSS is used in NOAA’s climate prediction center 

(https://www.cpc.ncep.noaa.gov/products/predictions/90day/skill_exp.html).  
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4.0 Results 

4.1 Evaluation of SubX reforecasts 

4.1.1  Precipitation and temperature skill  

We examined the precipitation and temperature skill of the individual SubX models (raw 

data, 1° resolution), as well as the multimodel ensemble mean (denoted as “Multimodel”), at lead 

times of 1-4 weeks averaged over the coastal Western U.S.  for each month during the Oct-Mar 

period separately (see Figure 2). We chose to focus our evaluation on the cool season months 

Oct-Mar as precipitation is generally much lower over most of our domain in the warm season.  

Figure 2a shows that precipitation skill (as measured by ACC) drops rapidly by approximately 

40% after week 1. Almost all models have positive ACC in all months; but by week 3, some 

models show almost zero ACC in certain months. Among individual models, NCEP-CFSv2 

performs best in weeks 1-2, with skill similar to Multimodel. However, the model performance 

at longer lead times varies by months.  

Figure 2b shows the forecast skill for temperature (the pattern for Tmin is similar, so we 

only show Tmax here).  The temperature of SubX models individually as well as their 

multimodel mean shows statistically significant (different from zero) skill for all lead times in 

most conditions. Similar to precipitation, Tmax skill drops quickly after week 1. Tmax shows 

higher skill than precipitation for all leads and shows fewer negative ACC values in weeks 3–4. 

Overall, multimodel shows consistently statistically significant ACC across all lead times for 

both precipitation and temperature. The precipitation and temperature skill we found is 

consistent with previous studies of SubX (Cao et al,2021; DeAngelis et al.,2020). 
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Figure 2. Precipitation (a) and Tmax (b) prediction skill (as measured by the anomaly correlation coefficient 
(ACC)) of SubX models averaged over the coastal Western US for leads 1-4 weeks (without bias correction).    

 

Figure 3. Precipitation, Tmax and Tmin bias of SubX models averaged over representative basins and over 

October–March before and after bias correction. 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-22-0103.1.Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 03/01/23 07:00 PM UTC



15 

4.1.2 Performance of Daily BCSD 

The difference in precipitation and temperature skill (as measured by ACC) before and 

after applying daily BCSD is small. This meets our expectation since the QM is performed in a 

lead time-dependent manner. Figures 3-5 show the average relative bias ((model - 

observation)/observation % ) for precipitation forecasts and bias (model - observation) for 

temperature forecasts before and after applying daily BCSD, averaged over October–March. 

Before applying daily BCSD, the absolute relative biases of precipitation were up to 80% across 

models and over weeks 1–4. They were reduced to below 6% after applying BCSD. The biases 

in temperature were also reduced from up to 3.5℃ to below 0.5℃ after applying BCSD (Figure  

3). The bias maps before and after BCSD also show that the biases were essentially removed 

after applying BCSD (Figures. 4 and 5). 
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Figure 4. Spatial distribution of precipitation bias of SubX models over October–March before (1) and after (2) bias correction. 
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Figure 5. Spatial distribution of TMAX bias of SubX models over October–March before and after bias correction.
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4.2 Hydrologic model evaluation 

We examined model performance of the baseline run, forced by the Livneh et al. (2013) 

data with hourly disaggregation. We evaluated California drought area history for various 

drought levels (D0 - D4 drought based on USDM) compared with the USDM. The drought area 

time series in baseline run and USDM are highly consistent with correlation coefficients ranging 

from about 0.8 for D0 to 0.6 for D4 (Figure 6). We further compared the drought area time series 

for different drought levels in five subregions (coastal Washington, coastal Oregon, northern 

California, central California and southern California from north to south, see Figure 7). We 

found that drought duration becomes longer, and drought spatial coverage becomes larger from 

north to south. There are more small drought events in the north while the droughts in the south 

are more prolonged. 

It is important to note that our results are from the Noah-MP model with the Livneh 

forcing as the truth.  Use of observed soil moisture was not feasible because soil moisture 

observations are sparsely distributed and in most cases are only available for a decade or so at 

most. We nonetheless argue that use of model output soil moisture is plausible based on our past 

work and work of others. For instance, Su et al (2021) compared the Livneh et al (2013) forced 

Noah-MP simulated soil moisture with observed soil moisture from USDA/NRCS SCAN (Soil 

Climate Analysis Network) across COUNS. Their results showed in general that the spatial 

patterns of abnormally low soil moisture in the Noah-MP model constructions are similar to 

those in the observations.  Furthermore, as shown in supplement Text S2 and noted in section 

3.3, our comparison here of Noah-MP soil moisture with VIC soil moisture yielded similar 

results.  We might, alternatively, have used soil from one of several coupled land-atmosphere 

reanalyses, e.g., ERA-5(ECMWF, 2017).  ERA-5 soil moisture was found to have the highest 

skill among reanalysis products compared to in situ observations of soil moisture by Alessi et al, 

(2022) and Li et al., (2020).  However, it was less accurate than soil moisture produced by the 

LSM-based North American Land Data Assimilation System (NLDAS), and in particular the 

Noah LSM (Xia et al., 2012; Alessi et al, 2022). We opted therefore not to use reanalysis soil 

moisture (e.g., ERA5) in consideration of the above studies, and also because of root-zone soil 

moisture discontinuities issues at the transition points of some of the ERA5 production streams 

(Hersbach et al 2020). 
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Figure 6. California drought (D0 - D4) area time series for different drought levels from (a) baseline (driven 
by Livneh et al (2013) forcing) and (b)USDM. 
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Figure 7. Baseline drought area time series for different drought levels for five subregions (coastal 

Washington, coastal Oregon, northern California, central California and southern California from north to 

south). 
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4.3 Assessment of Drought Forecast Skill 

Figure 8 shows the SubX-based BSS values for major drought termination at leads week 

1–4. Here we define major droughts at the grid cell level as a) drought period > 50 days, and b) 

the drought event is separated by at least 30 days from any other drought. The drought 

termination and onset forecast is defined as a hit when the forecasted date and the observed date 

fall within a one week window. We found that drought termination skill is highest for D0 

drought and lead week 1. Here we show median results of the 30 ensembles. At lead week 1, we 

see widespread high skill (BSS score higher than 0.4~0.5) for droughts D0 - D2 (except for 

southern CA for D2, Figure 8). The skill drops to negative for D3 in large parts of southern and 

central CA and part of OR. The decreasing skill spreads further in CA and OR for D4. At lead 

week 2, the skills for D0 – D2 are still relatively high (BSS score around 0.2~0.3 for most part, 

except for southern CA for D2). We see more widespread negative skill in D2-D4 compared with 

at week 1. At lead week 3, there is some limited skill for D0 -D2. At week 4, most of our study 

domain shows no skill for D0-D4 (except a small part of inland southern CA and WA). Overall, 

the skill decreases as the drought severity increases and also as the lead time increases. From a 

spatial perspective, skill decreases from north to south.  Figure 9 shows the SubX-based BSS 

values for drought onset at lead week 1–4. We see usable onset skill in lead week 1 and 2 for 

droughts D0-D2 over most of WA, OR northern and central CA. Overall, onset skill is a little 

lower than termination skill. The onset skill also decreases with drought severity and lead time 

and decreases from north to south. To reduce noise spatially, we averaged the soil moisture for 

the subregions shown in Figure S5 and assessed the drought forecast skills at different 

subregions (see supplement Text S3 for details). The skills at the subregion level are generally 

consistent with what we found from grid cell based skills. 

The drought forecast skill is highly related to precipitation forecast skill. Li et al (2021) 

found a similar degradation pattern of SubX precipitation forecast skill from north to south over 

the coastal Western U.S. for most of the models and at all lead times (weeks). This might explain 

the north to south decreasing drought forecast skill we found here.  Atmospheric rivers (AR) play 

a critical role as a common cause of the end of droughts on the West Coast (Dettinger et al 

2013). The high skill of drought termination at lead week 3-4 in southern CA and WA might be 

related to the high AR forecast skill in these regions. DeFlorio et al (2019) found isolated 
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positive skill over these locations at weeks 3–4 lead for strong AR activities in some of the SubX 

models.  
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Figure 8. SubX-based debiased Brier skill score (BSS) for lead weeks 1-4 for drought termination. The 
columns show results for drought levels D0-D4; the rows show leads from week1 to week4. Blank areas denote 

no drought at this level in this location. 
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Figure 9. SubX-based debiased Brier skill score (BSS) for lead weeks 1-4 for drought onset. Columns show 
drought levels D0-D4; rows show leads from week1 to week4. 
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Figure 10 shows forecast POD for major D1 drought continuance, termination and onset 

for the five subregions and for different models at 2-week lead time. We summarized the POD 

(hit rates) based on the percent detection at the grid cell level. A forecast of drought continuance 

is counted as hit when the drought remains through the predicted period. The forecast of 

continuance is evaluated relative to persistence, defined as drought conditions assumed to persist 

through the period (if there is no drought in the beginning, then it’s assumed no drought in the 

end; if there is drought in the beginning, then it’s assumed drought in the end). The figure shows 

that skill for forecasts of continuance is consistently high in all regions and across all models, 

Skill for forecasts of termination is higher in the north than in the south. Except for forecasts of 

termination in WA, which have skill comparable to persistence, all other regions’ onset and 

termination forecast skill are lower than persistence. We see very low forecast termination skill 

and very high continuance skill in southern CA. The reason might be that (a) the precipitation 

forecast skill in southern CA is comparatively lower (figure 4), which leads to lower soil 

hydrological forecast skill; and (b) drought events in southern CA are very prolonged and the 

drought event pool is small particularly during the SubX time period. Fewer events give a false 

prediction more weight in the calculation of POD and this may reduce apparent drought 

termination skill. 

The previous analyses all examined major droughts. We also want to know if the patterns 

for major droughts are similar to those for more modest drought events. Thus we also examined 

all drought events without restrictions on drought length. We calculated the ETS, HSS, POD 

FAR and BIAS score for drought termination, at grid cell scale at 2-week lead time (Figure 11). 

Using all 30 ensembles, we evaluated the best condition and the median condition among all 

ensemble members. For ETS, HSS and POD, positive values indicate skill.  ETS for drought 

termination is ~0.3 in coastal WA and OR and southern and central CA in the best condition and 

~0.2 in the median condition. HSS and POD are as high as high ~0.4 - ~0.6 in the above 

locations in the best condition and ~0.2 - ~0.3 in the median condition. These metrics all show 

the lowest skill in southern CA. FAR results show higher false alarms in the south (especially 

southern CA) and lower in the north. The bias score is almost 1 in most of our study area in the 

best condition, indicating almost no bias in this case. We see scattered high bias (overforecast, 

mostly in inland southern CA and inland WA) and low bias (underforecast, mostly in CA and 

OR) in the median condition. In summary, all the metrics show the same general trend as for 
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major droughts:  higher skill in the north and lower in the south. We repeated the same procedure 

for drought onset (Figure 12) and found similar patterns from north to south, however the overall 

forecast skill for onset is lower than for drought termination. 

 

 

Figure 10. Drought persistence, continuance, termination and onset forecast skill for D1 drought at 2-week 
lead time by subregions and by SubX models.  
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Figure 11. ETS, HSS, POD, FAR and Bias Score for drought termination in  (a) best condition, (b) median 

condition across all ensembles at 2-week lead time. 
 

Figure 12.  ETS, HSS, POD, FAR and Bias Score for drought onset in (a) best condition, (b) median condition 
across all ensembles at 2-week lead time. 
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5.0 Conclusions 

We examined the performance of SubX-driven forecasts of droughts in the coastal 

Western U.S. with leads from 1 to 4 weeks. We first evaluated SubX reforecasts of precipitation 

and temperature. Our findings with respect to SubX precipitation and temperature skill are 

similar to previous studies (e.g., Cao et al, 2021). After statistical downscaling and bias 

correction of the forcings, we ran the Noah-MP LSM over the domain for the period 1999–2016. 

We then evaluated skill of SubX-based drought forecasts with a focus on drought termination 

and onset by using a variety of metrics. We evaluated both major droughts and more modest 

events.  

Based on our analysis, we found usable drought termination and onset forecast skill at 

week 1 and 2 leads for major D0 -D2 droughts; we found limited skill at week 3 for major D0-

D1 droughts and essentially no skill at week 4. Drought prediction skill generally declines with 

increasing drought severity. We found the skill is generally higher on termination than for onset 

for both major and all drought events. We also found drought prediction skill generally increases 

from south to north for both major and all drought events. 

S2S forecasting of meteorological and hydrologic variables is an active research topic 

that is attracting significant attention from both the research community (Vitart et al., 2017& 

2018; DeFlorio et al., 2019; Pan et al., 2019; Zhu et al., 2018) and the applications and 

stakeholders’ communities (including public health, agriculture, emergency management and 

response sectors, and water resource management, e.g., White et al., (2017 &2022); Robertson et 

al., 2020). We acknowledge, however, that S2S forecasting is still a maturing area. The drought 

forecast skill (in onset and termination) that we find is highly dependent on precipitation forecast 

skill. Precipitation forecast products with finer resolution and higher skill likely will improve 

drought forecast skill. Future studies could extend our work to more extreme events like floods 

and explore the usefulness of including higher resolution of forecast products. Exploiting of the 

large-scale climate drivers might also benefit by identifying additional sources of skill (e.g., El 

Niño–Southern Oscillation (ENSO), the Madden–Julian Oscillation (MJO) and North Atlantic 

Oscillation (NAO)) (DeFlorio et al., 2019; White et al.2022). Finally, employing artificial 

intelligence and machine learning techniques (e.g., Chapman et al., 2019; Bouaziz et al 2021; 

Qian et al 2021) may have the potential to improve S2S prediction skill. 
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Data availability statement 

NCEP-CFSv2 output were obtained from https://www.ncdc.noaa.gov/data-access/model-data/ 

model-datasets/climate-forecast-system-version2-cfsv2, and output for the other models were 

obtained from the IRI data library http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/). 

The LSMs simulation results are available at  https://doi.org/10.6084/m9.figshare.21508047.v1 
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