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Key Points: 13 

 Groundwater storage recovery during post-drought periods ranged from 34% (2007–2009 14 

drought) to 13% (2012–2016 drought). 15 

 Projected drought recovery times decrease by a factor of 3.6-7.8 with post-drought 16 

periods containing a) no drought years or b) wet years only.  17 

 Overdraft recovery times decrease ~2x with implementation of modest pumping 18 

restrictions under no-drought post-drought climate. 19 

 20 

Abstract 21 

Groundwater depletion is a major threat to agricultural and municipal water supply in California’s 22 
Central Valley.  Recent droughts during 2007–2009 and 2012–2016 exacerbated chronic groundwater 23 
depletion. However, it is unclear how much groundwater storage recovered from drought-related 24 
overdrafts during post-drought years, and how climatic conditions and water management affected 25 
recovery times. We estimated groundwater storage change in the Central Valley for April 2002 through 26 
September 2019 using four methods: GRACE satellite data, a water balance approach, a hydrologic 27 
simulation model, and monitoring wells. We also evaluated the sensitivity of drought recovery to different 28 
climate scenarios (recent climate ± droughts) and future climate change scenarios (20 GCMs and 2 29 
RCPs).  Central Valley groundwater loss ranged from 19 km3 (2007 – 2009) to 26 km3 (2012 – 2016) 30 
(median of four methods). Aquifer storage recovery was 34% and 13% of the overdraft during the 2010–31 
2011 and 2017–2019 post-drought years. Numerical experiments show that recovery times are sensitive to 32 
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climate forcing, with longer recovery times for a future climate scenario that replicates historical 33 
climatology relative to historical forcing with no-drought. Recovery times for groundwater pumping 34 
restrictions at 30th to 50th percentiles of historic groundwater depletion were reduced by ~2× relative to no 35 
pumping restrictions under no-drought future climatology. This study highlights the importance of 36 
considering water management within the context of climate change scenarios to determine future 37 
drought recoveries.  38 

 39 

Plain language summary: 40 

California’s Central Valley has experienced chronic groundwater depletion over the past few 41 

decades, the rate of which has been amplified by droughts in 2007-2009 and 2012-2016. There is 42 

limited knowledge as to how much of the drought-caused groundwater depletion has recovered 43 

during post-drought years and how climate and water management affect overdraft recovery 44 

times. We address these issues by estimating groundwater storage changes using four methods 45 

and conducting numerical experiments with varying climatic conditions and water management 46 

options. We find that less than one-third of the groundwater overdraft from the most recent 47 

droughts was recovered during post-drought years. Projected overdraft recovery times vary 48 

greatly depending on the climate scenarios and water management strategies, and future droughts 49 

are likely to cause overdrafts from which recovery is unlikely given the current level of 50 

groundwater extractions. However, management measures such as capping groundwater 51 

pumping could reduce recovery times by a factor of two or more depending on the groundwater 52 

extraction cap and post-drought climate.  53 

  54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 
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1 Introduction 62 

Groundwater overdraft during droughts is common in semiarid regions globally (Wada et al., 63 

2010), and climate change is expected to further accelerate groundwater depletion in these 64 

regions (Alam et al., 2019; Wu et al., 2020). Groundwater overdrafts linked to droughts are 65 

caused both by reduced groundwater recharge and increased agricultural, industrial, and 66 

municipal water demand (Russo and Lall, 2017; Taylor et al., 2013). The impact of drought on 67 

groundwater can be especially severe in irrigated agricultural regions with limited surface water 68 

supply. There is a critical need to understand drought impacts on groundwater and to identify 69 

measures to improve resiliency to droughts (Taylor et al., 2013). 70 

Recovery of groundwater is critical for long term environmental and agricultural 71 

sustainability. However, aquifers in semi-arid regions such as the U.S. High Plains and 72 

northeastern India have shown limited resilience to drought events — the groundwater depletion 73 

during droughts are typically not fully recovered (Famiglietti et al., 2011; Rodell and Famiglietti, 74 

2002; Scanlon et al., 2012; Voss et al., 2015). Limited recovery can be attributed to excess 75 

groundwater use that in some regions exceeds the net volume of water supplied during wet post-76 

drought years. For instance, groundwater in the Central and Southern High Plain aquifers (USA) 77 

has been declining over the past few decades (39 km3 during 2002 to 2017), and there has been 78 

very low overdraft recovery during this time (i.e., 2006 through 2010) (Rateb et al., 2020). In 79 

contrast, there are also some regions that show rapid groundwater recovery during post-drought 80 

years (e.g., Texas Gulf Coast) (Rateb et al., 2020). Irrespective of the recovery pattern (rapid vs 81 

slow), precipitation and related surface water supply are key to overdraft recovery as high 82 

precipitation promotes greater groundwater recovery. Additionally, precipitation events affected 83 

by large scale climatic conditions, such as the El Niño Southern Oscillation (ENSO) (2 to 7-year 84 

cycle) or the North Atlantic Oscillation (NAO) (3 to 6-year cycle) have been found to influence 85 

groundwater level variability in many aquifers globally, e.g., North Atlantic Coastal Plain 86 

principal aquifers (USA), Northwest India, Southwest British Columbia and other regions 87 

(Asoka et al., 2017; Fleming and Quilty, 2006; Kuss and Gurdak, 2014; Perez‐Valdivia et al., 88 

2012). However, the complex interplay between climatic conditions (e.g., precipitation) and the 89 

nature of groundwater recovery is modulated by water management (e.g., groundwater pumping, 90 
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reservoir regulation), and varying hydrogeologic conditions. To our knowledge, there is no study 91 

that investigates the groundwater recovery associated with droughts and its connection to 92 

precipitation and water management practices, particularly in highly managed aquifer (e.g., 93 

Central Valley of California). 94 

California’s Central Valley (CV)—one of the richest agricultural regions in the world— 95 

has experienced frequent droughts over the past half century, with the last decade marked by two 96 

major drought periods: 2007–2009 and 2012–2016 (Famiglietti, 2014; Faunt et al., 2016; 97 

Thomas et al., 2017). Despite the droughts, agricultural water consumption in the CV did not 98 

decrease during the drought years (Alam et al., 2019a; Gebremichael et al., 2021). The effects of 99 

drought instead were mitigated by supplementing or replacing surface water supply sources with 100 

groundwater (Famiglietti et al., 2011; Ralph & Dettinger, 2012). Increased water demand over 101 

time compounded by ongoing climate change have resulted in long-term groundwater depletion 102 

in the CV, which was accelerated during the 2007–2009 and 2012–2016 droughts (CDWR, 103 

2013; Hanak et al., 2017; Xiao et al., 2017). The historic chronic groundwater depletion (Faunt et 104 

al., 2009) motivated the State Legislature to enact the Sustainable Groundwater Management Act 105 

(SGMA), which mandates sustainable groundwater use (California State Legislature, 2014). 106 

While the use of groundwater to mitigate surface water shortages during droughts may be an 107 

obvious management response that improves the reliability and robustness of the system, post-108 

drought recovery of groundwater overdraft is key to long-term sustainability. To ensure post-109 

drought groundwater storage recovery and develop a sustainable groundwater management plan 110 

that increases groundwater resilience, there is a critical need for improved understanding of (1) 111 

how much groundwater was recovered during post-drought years, and (2) the influence of 112 

climate vs anthropogenic factors on post-drought groundwater recovery.  113 

A major constraint in understanding post-drought groundwater recovery is the lack of 114 

reliable groundwater storage data on a regional scale. Groundwater storage change estimates for 115 

the CV vary substantially among different methods (Alam et al., 2020; Ojha et al., 2020; 116 

Scanlon, et al., 2012), and this has made understanding of drought recovery challenging. 117 

Commonly used methods for groundwater storage change estimation are, (1) well measurements 118 

(Rateb et al., 2020; Scanlon et al., 2012), (2) Gravity Recovery and Climate Experiment 119 

(GRACE) satellite-based estimates (Rateb et al., 2020; Scanlon et al., 2012), (3) water balance 120 
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methods (Xiao et al., 2017), and (4) hydrologic simulation models (Brush, 2013; Faunt et al., 121 

2016). Each of these methods has its own strengths and weaknesses. Well data provide direct 122 

measurements of groundwater levels, yet such measurements are scarce in many places, lack 123 

continuous long-term measurements, and calculation of groundwater storage from well 124 

measurements is prone to large uncertainties because of lack of knowledge of aquifer storage 125 

coefficients and order of magnitude variations in storage coefficients between unconfined and 126 

confined aquifers. Continuous estimates of groundwater storage change (2002 to present) can be 127 

derived from the GRACE satellites which measure terrestrial water storage (TWS); however, the 128 

GRACE footprint is large (~150,000 km2), limiting small scale groundwater storage change 129 

estimation (Long et al., 2016; Longuevergne et al., 2007). Another approach to estimate regional 130 

groundwater storage change is through the water balance method (WB), which sums the influxes 131 

(precipitation, inflow) and subtracts the outfluxes/storage changes (evapotranspiration [ET], 132 

outflow, in soil moisture, snow, and surface water) over a prescribed domain (Xiao et al., 2017), 133 

closes the water balance (and hence provides groundwater storage change estimates compatible 134 

with the other hydrological components), yet it is subject to estimation errors from each of the 135 

water balance components. Hydrologic models simulate continuous groundwater storage 136 

changes, and are ideal to perform scenario experiments (Dogrul et al., 2016; Faunt et al., 2016). 137 

However, such simulations are subject to errors resulting from model’s approximation to 138 

physical process, parameter estimation, and input data accuracy.   139 

In summary, each of the groundwater storage change estimation/measurement methods 140 

has its own pros and cons, and there is no single method that is likely to outperform others. Past 141 

studies of groundwater change in the CV (and many other regions of the world) have relied on 142 

only one or two of the above methods.  For instance, Xiao et al. (2017) estimated groundwater 143 

depletion and post-drought recovery for the 2007–2009 drought using GRACE satellite data and 144 

the WB method. They found groundwater depletion trends for the two methods were similar, but 145 

recovery rates differed substantially. We argue that in order to fully understand post-drought 146 

groundwater storage recovery, it is important to formally acknowledge differences in results 147 

from the various groundwater estimation methods, but to use multiple methods to the maximum 148 

extent possible. This can be done through the use of all available groundwater estimation 149 

methods and by identifying and acknowledging agreements and disagreements in the results. To 150 
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our knowledge, no study has been performed on CV that examines and compares groundwater 151 

depletion and recovery rates from all four-groundwater storage change estimation methods. 152 

Climate and anthropogenic factors can strongly influence groundwater depletion and 153 

recovery (Alam, et al. 2019; Hanson et al. 2012; Taylor et al. 2013; Wu et al. 2020). Droughts 154 

cause groundwater depletion; the drought recovery period is often calculated from post-drought 155 

precipitation duration  and magnitude (DeChant and Moradkhani, 2015; Pan et al., 2013). High 156 

precipitation during post-drought years reduces post-drought recovery period, but the effective 157 

recovery rate may be hindered by anthropogenic factors, such as  increased agricultural and 158 

municipal groundwater pumping (Gleeson et al., 2012; Ojha et al., 2020). Although drought 159 

impacts on groundwater availability have been well studied (Argus et al. 2017; Scanlon et al. 160 

2012; Taylor et al. 2013; Thomas and Famiglietti 2019; Xiao et al. 2017), it is unknown how 161 

groundwater recovery during post-drought years relates to post-drought precipitation. In addition 162 

to degree of recovery of groundwater storage, the rate at which groundwater recovery occurs is a 163 

key indicator of the resilience of the groundwater system. Rapid recovery indicates that an 164 

aquifer is resilient to extreme climate conditions such as drought. In contrast, slow recovery can 165 

be threatening as another drought event may begin before full recovery from a previous drought. 166 

In the past few decades, there were a few wet spells over California, but it is unknown if such 167 

wet spells are sufficient for recovery of groundwater overdraft during droughts, and if not, what 168 

measures could be implemented to assure full post-drought groundwater overdraft recovery. The 169 

overdraft recovery duration and its relationship with precipitation amount in the CV aquifer is 170 

currently unknown. 171 

The objective of this study is to address the following questions: (1) how much of the 172 

groundwater storage overdraft related to recent droughts in the CV was recovered during post-173 

drought years? and (2) what is the role of precipitation and water management strategies in rapid 174 

versus slow post-drought groundwater storage recovery? We address these issues using the four 175 

methods summarized previously. We also isolate the impact of future climate on groundwater 176 

storage recovery from drought using different scenarios (historical climatology, no drought, wet 177 

years only) and climate change impacts using 20 Global Climate Models (GCMs) and two 178 

Representative Concentration Pathways (RCPs) from the IPCC Fifth Assessment Report. Our 179 
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outcomes are intended to provide insights into drought resiliency that could help in developing 180 

groundwater management plans mandated by SGMA (California State Legislature, 2014). 181 

2 Study area 182 

The CV, located along a north-south transect in California, drains three major watersheds 183 

that deliver water to the CV region: the Sacramento, San Joaquin, and Tulare (SSJT watersheds) 184 

(Figure 1a). The CV is a flat valley of about 54,000 km2 area surrounded by mountains: the 185 

Sierra Nevada to the east and the Coastal range to the west. The climate of this region is 186 

Mediterranean, with most precipitation occurring in the winter (November through March), out 187 

of phase with evaporative demand which is high in the summer (July through September) 188 

(Cooper et al., 2018). The two major droughts of the past two decades (2007–2009 and 2012–189 

2016) resulted in 38.6% of California being in severe to exceptional drought categories 190 

(according to the U.S. Drought Monitor) between 2007–2009, and 68% between 2012–2016, 191 

suggesting 2012–2016 drought was relatively more severe. See supporting information (SI), 192 

Figure S1. 193 

Precipitation generally decreases both from north to south and through headwaters along 194 

valley to mountain transects (Figure 1a). Generally, headwater watersheds are considerably 195 

wetter than valley bottoms. About half (~28,000 km2) of the CV is irrigated. The source of water 196 

is a mixture of surface and groundwater (Hanak, 2011). The contrast in north-south water 197 

demand and supply motivated the construction of headwater reservoirs and infrastructure that 198 

convey surface water from the Sacramento-San Joaquin River Delta in the north to the south 199 

with infrastructure known as the State Water Project (SWP) and the federal Central Valley 200 

Project (CVP). Most of the surface water supply to the CV is generated in the headwater 201 

watersheds. More than 50 reservoirs  (20 reservoirs in the Central Valley Project and 34 in the 202 

State Water Project) regulate inflows from the headwaters to the CV (CDWR, 2014; USBR, 203 

2014). Surface water from headwater watersheds enters the CV at ~50 locations (Figure 1b). 204 

Excess surface water after meeting all demands (agricultural, municipal, and industrial) is 205 

released to the San Francisco Bay via the Delta. 206 

 The CV aquifer contains unconsolidated sedimentary deposits in stream channels, 207 

alluvial fans, and flood plains (Farrar and Bertoldi, 1988). The aquifer material in the western 208 
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CV (coastal) is relatively fine grained whereas the material in the eastern CV is much coarser 209

grained (granite and volcanic). Lenses and beds of fine-grained material (Corcoran clay) are 210

found predominantly in the southern Tulare Basin and the western San Joaquin Basin, and 211

restrict vertical flow of groundwater (Planert and Williams, 1995). 212

 213
Figure 1. Study area: (a) Central Valley boundary and Sacramento-San Joaquin-Tulare (SSJT) 214

watersheds, with long term mean annual precipitation (averaged over 2000-2018; source 215

http://worldclim.org/); (b) Locations of major reservoirs (CDEC, 2020), with elevation, surface 216

water network, and inflow locations to the CV; (c) Location of groundwater wells  (total 23,048) 217

in the CV (CASGEM, 2021). The inset in Figure 1c shows the GRACE analysis region (red 218

border). 219

3 Data and Method 220

We produced multiple estimates of groundwater storage (GWS) change and conducted 221

numerical experiments to quantify the role of climate and water management on groundwater 222

overdraft recovery following drought. Our approach follows three steps:  223

(1) Estimate GWS changes using four different methods,  224
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(2) Conduct numerical experiments with different climatic conditions and water management 225 

options to estimate the time for GWS recovery from drought, 226 

(3) Conduct numerical experiments to estimate the time for GWS recovery under future 227 

climate change. 228 

In Step (1), we estimated GWS changes using the four methods: GRACE satellite data, 229 

WB, model simulation, and well measurements. In Steps (2) and (3), we performed numerical 230 

experiments. 231 

3.1 Metrics for measuring post-drought groundwater storage recovery 232 

Metrics for estimating groundwater storage recovery time and volume following drought 233 

can take multiple forms. For instance, groundwater recovery can be measured with respect to the 234 

historical average condition or some other threshold level. In our case, we measure the post-235 

drought groundwater recovery with respect to the pre-drought GWS level (see Figure S6, SI for 236 

detail). We used the following metrics for measuring recovery: GWS recovery volume 237 

, GWS depleted during drought ( , GWS recovery percentage , 238 

and GWS recovery duration  239 

 

 

 

 

Where,  is the time in months between the drought ending month ( ) 240 

and the post drought month under consideration ( ).  241 

3.2 GWS change estimation using multiple methods in the recent decades 242 

In order to characterize GWS depletion and recovery in the recent decade (2003–2019), 243 

we used GWS estimates made by four different methods. The GWS change estimation methods 244 

considered in this study are: (1) GRACE, (2) Wells, (3) WB, and (4) hydrologic model 245 

simulation (C2VSIM). The key input datasets used in each method are listed in Table 1. 246 
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Table 1. List of datasets used for estimating GWS change. 247 

Data type Data source Spatial distribution/ 
resolution 

Reference/note 

Groundwater level California Statewide 
Groundwater Elevation 
Monitoring (CASGEM) 

Total stations in CV: 
23,048 

CASGEM (2021) 

Terrestrial Total Water 
Storage Anomaly 
(TWSA) 

GRACE and GRACE-FO 
MasCon. Two sources: (1) Jet 
Propulsion Laboratory (JPL-
m) and (2) Center of Space 
Research (CSR-m) 

0.5 degree Save (2020); Save 
(2016); Watkins et 
al. (2015) 

Reservoir storage California Data Exchange 
Center 

~50 reservoirs CDEC (2020) 

Streamflow Inflow data from United States 
Geological Survey (USGS); 
outflow data from Dayflow 

52 inflow locations and 
delta outflow  

CDWR (2020); 
Dayflow (2020); 
USGS (2020) 

Land use USDA National Agricultural 
Statistics Service Cropland 
Data Layer 

30 m USDA-NASS 
(2020) 

Precipitation 
 

PRISM 4 km Daly et al. (2008) 
DAYMET 1 km Thornton et al. 

(2017) 
Livneh et al. (L13) ~6 km (1/16th degree) Livneh et al. (2013) 

Evapotranspiration, 
snow water equivalent, 
and soil moisture 

Variable Infiltration Capacity 
(VIC) simulations 

~6 km (1/16th degree) VIC-4.1.2.g model 
simulated for this 
study 

C2VSIM-FG simulated 
GWS 

GWS obtained from C2VSIM 
simulation (2002-2015). We 
extended the simulation to 
September-2019.  

Central Valley-wide CDWR (2020) 

Specific yield (Sy) C2VSIM-FG model field 
CVHM model field 

~1.65 km2 (avg.) FE 
cells 
1.61 km FD grids 

CDWR (2020) 
Faunt et al. (2009) 

 248 

3.2.1 GRACE‐based estimate of GWS change 249 

We used GRACE/GRACE-FO release (RL06) level 3 mass concentration (MasCon) 250 

solutions from two sources, NASA Jet Propulsion Laboratory (JPL-m) and University of Texas 251 

Center for Space Research (CSR-m). In contrast to the traditional processing method (i.e., 252 

spherical harmonics) (Bettadpur, 2012; Wahr et al., 1998), MasCon solutions can be applied at 253 
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regional scale as they better distinguish land and ocean signals, thus reducing leakage errors 254 

(reducing leakage of signal from land to ocean) (Long et al., 2016). Also constraining MasCon 255 

solutions with geophysical data during processing makes it suitable for the non-geodetic 256 

community. MasCon solutions parameterize the gravity field with regional concentration 257 

functions and have been applied globally in numerous studies (Save et al., 2016; Scanlon et al., 258 

2016; Watkins et al., 2015). CSR and JPL MasCon solutions vary in the scale of grid cells; CSR 259 

uses 1° (or ~120 km at the equator) hexagonal tiles of geodesic equal area (Save et al., 2016), 260 

and JPL solves the gravity field at a 3° spherical cap (~330 km at the equator) (Watkins et al., 261 

2015). Details about CSR and JPL MasCon data processing are provided by Save et al. (2016) 262 

and Watkins et al. (2015). 263 

We used the GRACE/GRACE-FO data for the period April-2002 through September-264 

2019 to estimate GWS changes. The GRACE/GRACE-FO data provide the total water storage 265 

(TWS) anomaly at monthly time steps. TWS includes storages in snow, surface reservoir, soil 266 

moisture, and groundwater. We subtracted all of the storage terms from the TWS measurement 267 

to estimate the GWS change time series (see SI, Text S1 for detail). Because the GWS change in 268 

the CV (Figure 1a) is higher than that in the surrounding region (Xiao et al., 2017), we used the 269 

original 3-degree mascon tiles following (Ojha et al., 2019)  to conduct an analysis that takes into 270 

account the groundwater signal potentially distributed inside each mascon tile. Figure 1c shows 271 

the GRACE analysis region (hereafter, we refer to GWS change in the GRACE analysis region 272 

as the change in the CV for GRACE/GRACE-FO based calculations). The GRACE/GRACE-FO 273 

based GWS change ( ) is computed by subtracting the soil moisture storage anomaly 274 

( ), snow water equivalent anomaly ( ), and surface water storage anomaly 275 

( ) from the terrestrial water storage anomaly ( ) obtained from JPL-m and CSR-m 276 

dataset: 277 

        (5) 278 

3.2.2 Water balance method 279 

 was estimated as a residual in the WB method. The WB components are 280 

precipitation, ET, storage changes (soil moisture, snow water equivalent, reservoir storage), 281 

streamflow into and out of the CV:  282 
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 283 

        (6) 284 

where P, Qin, Qout, and ET are precipitation, surface water inflow to the CV, delta outflow 285 

from the CV and ET. , ,  and  are changes in GWS, soil moisture 286 

storage, snow water equivalent and surface water storage (reservoirs), respectively. Table 1 287 

provides a summary of data type, sources, and references (detailed descriptions in SI, Text S1).  288 

3.2.3 Model simulations (C2VSIM) 289 

We used an integrated groundwater-surface water simulation model, known as California 290 

Central Valley Surface-Groundwater Simulation Model (C2VSIM), to estimate GWS change for 291 

2002 through 2019. C2VSIM, developed by California Department of Water Resources 292 

(CDWR), simulates all important hydrologic processes including streamflow, surface runoff, 293 

root-zone and vadose zone processes and groundwater flow (Brush, 2013; Dogrul et al., 2015).  294 

Its core is a finite element solver of the groundwater flow equations for finite element grids. 295 

Several previous studies have used the model to simulate groundwater-surface water dynamics in 296 

the CV region (Alam et al., 2020; Brush, 2013; Ghasemizade et al., 2019; Kourakos et al., 2019; 297 

Miller et al., 2009).  The model is available at https://data.cnra.ca.gov/dataset/c2vsimfg-version-298 

1-0 (last accessed: March 2021). We used version 1.0 of the C2VSIM fine grid model (IWFM-299 

2015 version), which is the most updated version of the model (hereafter, referred as C2VSIM) 300 

(CDWR, 2020; See SI ,Text S3 and S4 for more detail).  301 

3.2.4 GWS change calculation using well-measurements 302 

We calculated GWS changes for the entire CV using groundwater head time series 303 

obtained from wells. We assembled groundwater level data from CDWR for 2002 through 2019 304 

(CASGEM, 2021). There are 43,987 wells in the CASGEM database with multiple purposes 305 

(irrigation, domestic, monitoring, and others), including 23,014 groundwater wells are located in 306 

CV (Figure 1c). However, well records are not continuous at most locations and records are 307 

missing in many months. In general, the highest number of records are available for March and 308 

October (see SI, Figure S2, S3 for well numbers).  309 
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We computed volumetric GWS changes as the product of groundwater level changes, CV 310 

area, and storage coefficient (i.e., volume of water released from aquifer per unit decrease in 311 

head). Both groundwater level changes and the storage coefficient are uncertain. Groundwater 312 

level measurements from observation wells are generally a preferred option for calculating GWS 313 

changes, however, observation wells in CV are sparse in places, the number of measurements is 314 

below 500 in most of the months, and measurements are discontinuous. In contrast, there are 315 

numerous head measurements from pumping wells (e.g., well used for irrigation, industrial, 316 

residential, and other sectors), but they are pumped, which is reflected in the associated 317 

groundwater levels. That said, drawdowns due to pumping are expected to be small in winter, 318 

offering the possibility of the selective use of pumped wells.  319 

Another complication is that there is limited knowledge of the storage coefficient in CV 320 

that is required to compute GWS from head change. There are stacked unconfined and confined 321 

aquifers within the CV. For unconfined aquifers the storage coefficient is the specific yield (Sy) - 322 

the volume of water released due to drainage from an unconfined aquifer per unit decline in 323 

groundwater level.  In the CV, typical values range from 0.06-0.3 (Faunt et al., 2009). The 324 

storage coefficient in confined aquifers is typically 2 – 3 orders of magnitude less than that in 325 

unconfined aquifers (Faunt, 2009). In the unconfined aquifers, the groundwater surface (water 326 

table) is at atmospheric pressure and it declines as water drains through the porous media. In 327 

contrast, confined aquifers are bounded by an impermeable capping layer and groundwater is 328 

under pressures exceeding one atmosphere. Because the actual storage coefficient (both confined 329 

and unconfined) in the CV is unknown and there is limited knowledge of how much groundwater 330 

being extracted from unconfined versus confined aquifers, we used multiple storage coefficients 331 

and compare GWS estimation with other methods to obtain a sense of GWS trend and variability 332 

(more information in SI, Text S5).  333 

We followed four steps to estimate GWS changes from well data: (1) spatial interpolation 334 

of groundwater levels using Inverse Distance Weighing (GWL, 10 km resolution) for each 335 

month from 2002 through 2019; (2) calculation of the month-to-month changes in GWL for each 336 

grid cell; (3) multiplication of GWL changes by storage coefficients and area to obtain 337 

volumetric GWS changes; (4) calculation the cumulative GWS changes. Similar to Scanlon et al. 338 

(2012), we added a 2% uncertainty to our estimates to account for errors associated with 339 



Confidential manuscript prepared for Water Resources Research 

14 

 

 

interpolation. To identify suitable sets of well data capable of representing CV GWS changes, we 340 

generated two monthly GWS time series using: (1) only observation wells, (2) all types of wells 341 

(observation and pumped) 342 

3.3 Numerical experiment for estimating groundwater recovery under multiple climate 343 

and water management scenarios 344 

We conducted numerical experiments to quantify the recovery time for drought-345 

associated groundwater overdraft for multiple droughts, recovery percentage, water management, 346 

and climatic conditions. Among the four GWS change estimates discussed earlier, we used WB 347 

method for numerical experiment as it is computationally efficient for a very large numbers of 348 

iterations necessary for this study. In order to consider a range of post-drought climate scenarios, 349 

we performed sampling experiment from past climate data that could represent the following 350 

scenarios: 351 

 Recent climatology (2003–2019): Sampling of WB components from this period 352 

represents recent-decade climatology that includes different types of years (e.g., droughts 353 

2007–2009, 2012–2016; wet years: 2011, 2017 and others) 354 

 Long-term climatology (1982–2019): Sampling of WB components from this period 355 

represents long-term climatology.  356 

 No-drought climatology (2003–2006, 2010–2011, 2017, 2019): Sampling of WB 357 

components from this period represents optimistic scenario where droughts do not occur. 358 

 Wet climatology (2005-2006, 2011, 2017, 2019): Sampling of monthly WB components 359 

from this period represents wet climatic condition where Standardized Precipitation Index 360 

exceeds 0.5. This scenario provides an upper bound for the GWS recovery. 361 

 362 
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 363
Figure 2. Steps of numerical experiments conducted to estimate post-drought groundwater 364

storage recovery time for two droughts, recovery percentage, two water management options, 365

and four climate scenarios.  366

367

In order to consider water management options, we considered the following scenarios: 368

 No cap on groundwater extraction, which is the current situation in the CV. 369
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 Cap on groundwater extraction, which is likely the future scenario following the 370 

implementation of  SGMA that regulates groundwater usage. We considered different 371 

caps on groundwater extraction: 30th, 40th, and 50th percentile of groundwater depletion 372 

rate. 373 

Our numerical experiment approach is detailed in Figure 2. 374 

3.4 Post-drought groundwater recovery under future climate change scenarios 375 

We conducted synthetic experiments to assess the sensitivity of recovery times to water 376 

availability (i.e., inflow and precipitation over the CV) and evaporative demand and compare 377 

with projected changes under future change scenarios. The base scenario assumes that the inflow 378 

(and precipitation) is similar to the monthly median of the years 1982 through 2019. We 379 

generated an array of GWS time series for different percentage changes in inflow (and 380 

precipitation) and ET, and calculated recovery times for all combinations. This analysis produced 381 

a matrix of recovery times that show its sensitivity to inflow and ET. Furthermore, we compare 382 

these with projected changes for 20 Global Climate Models and 2 RCP scenarios: modest global 383 

emission (RCP4.5) and high global emission (RCP8.5) (Stocker et al., 2014). Similar method for 384 

climate change impact assessment has been found effective in earlier studies (Brown et al., 2012; 385 

Poff et al., 2016). 386 

4 Results and Discussion 387 

4.1 GWS depletion and recovery assessment in the recent decades 388 

4.1.1 GWS depletion and recovery estimates from different methods 389 

GWS changes estimated by the four methods show similar depletion and recovery 390 

patterns during 2002-2019 (Figure 3a and Table 2). All methods indicate lower groundwater 391 

storage in 2019 compared to 2003, with relatively mild decline during the first drought (2007–392 

2009) and severe decline during the second drought (2012–2016). However, there are important 393 

differences in the magnitude, depletion/recovery rates, and seasonal variations for the different 394 

methods. GRACE produce relatively higher seasonal GWS variations, whereas WB and 395 
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C2VSIM produce much lower seasonal amplitudes. While the GWS from well data is computed 396 

for winter months only to reduce potential errors sourcing from pumping wells.  GRACE shows 397 

relatively high groundwater storage at the end of the study period (2019). The WB and C2VSIM 398 

GWS time series are close to each other (see SI, Figure S7-S12 for WB components and 399 

uncertainty). C2VSIM GWS is intermediate between WB, GRACE and Well throughout the 400 

period. Compared to April-2003, the GWS in March-2019 changed by -19.1 km3 (GRACE), -401 

32.4 km3 (WB), -34.1 km3 (C2VSIM), and -27.1 km3 (Well). All methods show close agreement 402 

in post-drought recovery period when the uncertainty in GWS estimates is 3.9 km3 and 1.5 km3 403 

during 2010–2011 and 2017–2019, whereas the uncertainty in GWS change during drought 404 

periods are 2.7 km3 and 3.9 km3 for 2007–2009 and 2012–2016 droughts, respectively (Table 2). 405 

Uncertainties in GWS estimates can be attributed to the limitation of different GWS estimation 406 

methods to represent the groundwater dynamic associated with CV-wide groundwater extraction 407 

and land use activities. All methods show a depletion in GWS during the 2007–2009 and 2012–408 

2016 droughts, and GWS recovery during post-drought years 2010–2011 and 2017–2019.  409 

 410 

Table 2. GWS changes during drought and post-drought years. Drought periods are Jan-2007 to 411 

Dec-2009 and Jan-2012 to Dec-2016. Post-drought periods are Jan-2010 to Dec-2011 (or Pd1) 412 

and Jan-2017 to Feb-2019 (or Pd2). Percentage post-drought recoveries for Pd1 and Pd2 are 413 

shown in columns  and , respectively. 414 

Methods 2007–2009  
[km3] 

2010–2011 
[km3] 

Recovery 
 [%] 

2012–2016 
[km3] 

2017–2019 
[km3] 

Recovery 
 [%] 

GRACE -18.8 9.2 49.1 -27.5 4.0 14.5 
WB -16.5 3.2 19.3 -23.5 6.8 29.1 
C2VSIM -24.0 11.6 48.4 -33.6 3.5 10.3 
Well -19.5 2.4 12.2 -24.6 2.7 10.9 
Median -19.2 6.2 33.9 -26.1 3.8 12.7 
Average -19.7 6.6 32.3 -27.3 4.3 16.2 
St. dev. 2.7 3.9 16.7 3.9 1.5 7.6 

 415 

 416 

 417 

 418 
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 419
Figure 3. (a) Monthly GWS time series (median estimates) for the CV for April 2002 to 420

September 2019 estimated using the four methods. GRACE GWS is 5-month moving averages 421

to reduce seasonal variability. Well-based GWS is plotted only for winter months: December and 422

January (5-month moving averages), (b) GWS change (km3) estimates during drought and post-423

drought years. (c) Percent recovery of GWS from drought during post-drought years.  424

During the first drought (2007–2009) period, GWS changes from Jan-2007 to Dec-2009 425

were in the range -24 to -16.5 km3, depending on the method used, with C2VSIM indicating the 426

greatest depletion (-24 km3), and the WB indicating the least depletion (-16.5 km3) (Figure 3b). 427

During the subsequent post-drought period (2010–2011), GWS increased in 2011 compared to 428

2010 ranged from 2.4 to 11.6 km3, with C2VSIM indicating the highest recovery (11.6 km3), 429
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followed by GRACE (9.2 km3), with WB (3.2 km3) and Well (2.4 km3) showing lowest 430 

recovery. Comparison of the post-drought (2010–2011) and drought (2007–2009) periods GWS 431 

estimates from four methods (in the order Well, WB, CVISIM, and GRACE) showed on median 432 

34% of the GWS depleted during the drought was recovered during the post-drought years 433 

(Figure 3c). 434 

In the second and more-severe drought (2012–2016), the GWS changes from to Jan-2012 435 

to Dec-2016 ranged from -23.5 to -33.6 km3, with GRACE, WB and Well data showing 436 

relatively similar changes (-27.5, -23.5, and -24.6 km3, respectively), while C2VSIM showed 437 

relatively higher depletion (-33.6 km3) (Table 2). High GWS depletion in 2012–2016 is 438 

attributed to a longer dry period and greater drought-affected area that strongly increased 439 

groundwater dependence (Alam et al., 2019). During the subsequent post-drought years (2017–440 

2019), the GWS increase was low compared to the large overdraft created during the drought of 441 

2012–2016 for all methods. GWS in Feb-2019 increases relative to Jan-2017 ranged from 2.7 to 442 

6.8 km3, with WB showing largest recovery (6.8 km3), while GRACE, C2VSIM and Well data 443 

indicated similar and small recoveries (4, 3.5, and 2.7 km3). Overall, the groundwater storage 444 

recoveries from the 2012–2016 drought were relatively small (on median 13%).  As noted above, 445 

post-drought recoveries from the 2007–2009 drought were mostly higher than for the 2012–2016 446 

drought, although all estimates in this case as well were less than 50% of the GWS loss during 447 

the prior drought period. 448 

4.1.2 Uncertainties in GWS estimation methods 449 

Despite the variations among the methods, we find the GWS recovery magnitude ranges 450 

2.4–11.6 km3 during 2010–2011 and 2.7–6.8 km3 during 2017–2019 (Table 2), which is 451 

relatively small compared to drought period GWS changes of -16.5 km3 to -24 km3 and -23.5 452 

km3 and -33.6 km3 during the 2007–2009 and 2012–2016 droughts. In terms of percentages, the 453 

post-drought GWS recovery ranges 12.2–49.1% during 2010–2011 and 10.3–29.1% during 454 

2017–2019. In the previous section, we presented the median GWS changes from each method. 455 

Here, we discuss how the uncertainty in different methods affects the GWS estimates. 456 

The GRACE-based GWS estimate in our analysis could be estimated from two different 457 

sources of GRACE datasets (JPL-m vs CSR-m).  There are differences in GRACE-based GWS 458 
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estimates between CSR-m and JPL-m. We find that the GWS estimate from JPL-m more closely 459 

matches GWS estimates from other methods (both depletion and recovery; Figure S14 and Table 460 

S4 of SI), whereas the CSR-m based estimate shows less groundwater depletion than other 461 

methods and very high groundwater recovery during 2010–2011 (69.4%). Differences between 462 

JPL-m and CSR-m increased after applying the scaling factor provided by JPL intended to 463 

reduce signal error (Wiese et al., 2016), whereas no scaling factor is available for CSR-m 464 

(scaling factor for JPL-m is shown in Figure S15, SI). Therefore, JPL-m based GWS estimate 465 

can be used (after applying scaling factor) to reasonably to represent GWS depletion and 466 

recovery in the CV. However, we cannot conclusively state one GRACE MasCon product as the 467 

best one based on comparison over only the CV region, especially due to CV’s small size, north–468 

south orientation, and location near the coast. Although CSR-m shows relatively lower depletion, 469 

we follow a conservative approach and take the average of JPL-m and CSR-m to represent 470 

GRACE based GWS estimate. The difference in JPL-m and CSR-m estimates caused the GWS 471 

recovery percentage to vary from 38% to 69% during 2010–2011 and from 12% to 16% during 472 

2017–2019. 473 

The well-based GWS estimation is sensitive to the storage coefficient, interpolation 474 

method, and well selection criteria. The CV consists of both semi-confined and confined aquifers 475 

where knowledge of the storage coefficient is limited. The storage coefficient is the largest 476 

source of uncertainty when estimating GWS change from well data (Scanlon et al., 2012). We 477 

compared GWS estimates for three different storage coefficients and settled on an effective 478 

storage coefficient (Se = 0.06) (see Text S5 and Figure S16-S8 provides more information on 479 

storage coefficient and uncertainty in well-based GWS). The difference in the storage 480 

coefficients from multiple sources affect the magnitude of change, while keeping the percentage 481 

recovery same (as similar head change used with different storage coefficients). Regarding 482 

interpolation, although we used the IDW method, we also tested Kriging and found that the 483 

uncertainty associated with the interpolation method is much less than the uncertainty associated 484 

with the storage coefficient. We used all types of well data (pumped as well as observation) to 485 

generate well-based GWS time series, which means some measurements are affected by the cone 486 

of depression from pumping. However, groundwater pumping is typically less during the wet 487 

season (November through March) and hence well observations during this period should be 488 



Confidential manuscript prepared for Water Resources Research 

21 

 

 

much less affected by pumping. In our calculation of GWS changes during drought and post-489 

drought years, we compared GWS values for months in the wet season only (i.e., December or 490 

January, in the interest of omitting “shoulder” months) after taking a 5-month moving average 491 

(which captures GWS signal during the entire wet season). Therefore, well-based GWS changes 492 

estimated during and after drought years (Figure 3b) should be relatively unaffected by pumping. 493 

Furthermore, we computed GWS changes using observation wells, and found that the 494 

observation-well based GWS time series does not capture the seasonal pattern. This limited 495 

capacity of the observation well data is attributed to significantly lower numbers of 496 

measurements compared to the large area of the CV. Different approaches (interpolation 497 

methods, varying moving average time window) caused the GWS recovery percentage to vary 498 

from 0% to 44% during 2010–2011 and from 4% to 13% during 2017–2019.  499 

The WB-based GWS estimation in CV depends on the storage (i.e., soil moisture, SWE, 500 

and reservoir) and flux terms (i.e., inflow, outflow, ET). Average changes in storage term during 501 

2003–2019 is close to zero, and the magnitude of changes are relatively smaller than flux terms. 502 

Among the flux terms, we find the inflow to CV has greater uncertainty (standard deviation of 3 503 

km3/year) than precipitation (standard deviation of 1.42 km3/year) over the CV. Relatively high 504 

uncertainty associated with inflow is intuitive as headwater inflow supply volume is higher than 505 

the net precipitation over CV, and multiple sources of inflow data. Since we are using measured 506 

outflow, the outflow term does not add uncertainty in our estimation. Difference in WB 507 

components caused GWS recovery percentage to vary from around 8% to 69% during 2010–508 

2011 and from 13% to 81% during 2017–2019. 509 

The C2VSIM GWS estimation is affected by uncertain inputs from multiple sources: 510 

model parameters (e.g., storage coefficient, hydraulic conductivity, irrigation efficiency), surface 511 

water deliveries at different locations, groundwater pumping rates (and location of pumps), and 512 

input flux variables (e.g., precipitation, inflow, ET) (CDWR, 2020). In this study, we only used 513 

C2VSIM simulations publicly available and have not assessed the uncertainty in overdraft 514 

recovery introduced by model inputs and parameters. However, we estimated uncertainty from 515 

surface water delivery (relatively low to high surface water allocation) for the 2016-2019 period 516 

of C2VSIM simulation that we extended for this study, where we find the GWS recovery 517 

percentage during 2017–2019 vary between 2% to 30%. 518 
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4.2 GWS recovery assessment under varying climate and water management scenarios  519 

4.2.1 Recovery time under different climatology 520 

We calculated the probability of fully recovering from drought-related groundwater 521 

overdraft up to 20-years after drought termination (Figure 4a). The purpose of conducting such 522 

an experiment is to understand the response of the aquifer to different climatic conditions and get 523 

a sense of the feasibility of recovery from historical groundwater overdraft. The cumulative 524 

probability distribution (CDF) of full GWS recovery for the 2007–2009 and 2012–2016 droughts 525 

vary significantly for different climatic conditions (i.e., long term climatology, recent 526 

climatology, no-drought, and wet years) (Figure 4a). In general, the recovery time for the 2012–527 

2016 drought is longer than that from the 2007–2009 drought, which is attributable to the greater 528 

groundwater overdraft during the 2012–2016 drought.  529 

The cumulative distribution of post-drought recovery time shifts significantly from drier 530 

(recent climatology) to wetter (wet climatology) conditions, indicating high sensitivity of GWS 531 

change to the precipitation and inflow to the CV (Figure 4a). There is less than 10% chance to 532 

recover 2007–2009 overdraft in 5 post-drought years under recent climatology, while the chance 533 

is much lower for 2012–2016 overdraft (~3%) (Figure 4a). The precipitation and inflow under 534 

recent climatology scenario are around 359 ± 26 mm/year and 30 ± 4 km3/year, respectively. The 535 

recent climatology scenario consists of drought events similar to the recent past (2003–2019), 536 

therefore drought recovery will be less likely occur as we have already found that the CV GWS 537 

has been declining over recent decades (Figure 3a). A similar situation is the case for long-term 538 

climatology as the GWS has been declining over past decades due to frequent droughts and 539 

increased agricultural water use (Faunt et al., 2009). The recovery time curve for the long-term 540 

climatology scenario is close to the recent climatology with relatively longer recovery times 541 

(Figure 4a). In the long-term scenario, the existence of longer period droughts (e.g., 1986-1992) 542 

in addition to recent droughts results greater recovery times than for any other scenarios (Figure 543 

S18 of SI). There is only 15% (or less) chance to fully recover 2007–2009 drought overdrafts in 544 

20 years (much less chance for 2012–2016 drought). In contrast, there is around 95% chance to 545 

recover 2007–2009 overdraft in 5-years under wet climatology, which is around 85% for 2012–546 

2016 overdraft. The precipitation and inflow during the wet climatology are around 513 ± 6 547 



Confidential manuscript prepared for Water Resources Research 

23 

 

 

mm/year and 52 ± 3.5 km3/year, respectively. Under no-drought climatology, there is around 548 

48% chance to recover 2007-2006 overdraft in 5-years (~20% for 2012–2016 overdraft). At a 549 

relatively higher probability level (i.e., 80%), it would require 13-18 years to recover from both 550 

droughts under the no-drought conditions. Here, the precipitation and inflow during no-drought 551 

climate are around 451 ± 17 mm/year and 40 ± 4 km3/year, respectively. Comparing the recovery 552 

times between wet climatology and no-drought climatology, we find that the recovery time for 553 

the no-drought climatology is on average 2.3 and 3.5 times the recovery time for wet climatology 554 

at for 50% and 80% chances, respectively (Figure 4b-e). 555 

The post-drought recovery time increases almost linearly with recovery percentage (0-556 

100%), where the slope increases with the cumulative probability considered (e.g., higher slope 557 

for a cumulative probability of 0.99 than 0.5) (Figure 4b-e). The relationship between recovery 558 

time and recovery percentage indicates that it is difficult (if not impossible) to recover drought 559 

overdraft. Result shows that it would take 6-8 years to fully recovery overdraft under wet 560 

climatology, while it is less likely to have 6-8 consecutive wet years in reality. This indicates that 561 

the wet climate spells in California cannot fully recover drought caused overdraft under current 562 

water management conditions. From the above analysis, we infer that the CV aquifer is not 563 

resilient to droughts (less likely to fully recover) and will require appropriate management 564 

strategies to establish groundwater sustainability (as mandated by SGMA). 565 
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 566 
Figure 4. (a) Cumulative probability distribution of months required for 100% recovery of 567 

2007–2009 and 2012–2016 overdrafts. The horizontal axis is plotted on a normal probability 568 

scale. (b-e) Months required for varying percentages of overdraft recovery for two droughts (D: 569 

2007–2009 and 2012–2016) and cumulative probabilities (Cum. Prob.: 0.99 and 0.5). 570 

 571 
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4.2.2 Recovery times for restricted groundwater use scenarios  572 

We calculated overdraft recovery times for scenarios where a groundwater extraction cap 573 

is implemented. We analyzed three extraction cap scenarios equal to the 30th, 40th and 50th 574 

percentiles of historic GWS depletion. For a given scenario (e.g., 30th percentile restriction), 575 

ΔGWS below the threshold is restricted. To estimate the cap magnitude for a given percentile, 576 

we first identified negative GWS changes during 2003–2019. Then we estimated the 30th, 40th, 577 

and 50th percentiles of these negative GWS changes (Figure S19 of SI). The resultant magnitudes 578 

are -1.44 km3/month, -1.19 km3/month and -1.02 km3/month for 30th, 40th and 50th percentile, 579 

respectively (below which groundwater depletion is restricted under selected scenarios). Figure 5 580 

shows the cumulative probability distribution of groundwater recovery times for (a) 2007–2009 581 

and (b) 2012–2016 droughts after applying extraction caps. The extraction caps strongly affect 582 

the recovery times under the no-drought, recent, and long-term climatology scenarios, whereas 583 

they make little difference in the wet climatology scenario. The volume of reduced groundwater 584 

extraction under no-drought, recent, and long-term climatology scenarios vary between 2.1-2.6 585 

km3, 1.5-2.1 km3, and 1-1.5 km3/year for 50th, 40th, and 30th percentile groundwater extraction 586 

caps, the value of which are 1.9, 1.5, and 1 km3/year respectively for wet climatology. The 587 

limited effects of the caps under wet climatology are attributable to a much lower number of 588 

times when ΔGWS goes below the cap, hence the cap is rarely implemented. To demonstrate 589 

how effective the extraction cap would be, we extracted recovery times for cumulative 590 

probability levels 0.5 (moderate) and 0.8 (high chance) from Figure 5. For these probability 591 

levels the recovery times for recent and long-term climatology are beyond maximum time period 592 

of the analysis (240 months or 20 years; Figure 4), in other words, there is less than 50% chance 593 

to recover in less than 20 years under these scenarios. Therefore, we compared recovery times 594 

for no-drought and wet climatology scenarios.  595 



Confidential manuscript prepared for Water Resources Research 

26

 

 

 596
Figure 5. Cumulative distribution of recovery times for groundwater overdraft during (a) 2007–597

2009 and (b) 2012–2016 droughts. Recovery time is shown after implementation of 30th, 40th, 598

and 50th percentile groundwater extraction caps. 599

The results show that the groundwater extraction caps significantly reduce the drought-600

linked GWS recovery time under the no-drought scenario. Groundwater recovery times for full 601

recovery decreases by factors of 1.8 ± 0.1 (3.3± 0.8 years reduced) and 2.3 ± 0.3 (8.1± 1.4 years 602

reduced) after applying an extraction cap for probability levels of 0.5 and 0.8, respectively (see 603

SI, Table S5-S8). The recovery time for the 50th percentile restriction reduces recovery times by 604

0.4-1 year and 1.8-2.2 years more than for the 30th percentile under 0.5 and 0.8 probability 605

levels, respectively.  In contrast, recovery times is reduced by factors of 1.2-1.3 under the wet 606

climatology, which is relatively small as discussed above. Furthermore, recovery times were 607

reduced significantly under recent and long-term climatology. For instance, at a probability level 608

of 0.2 the recovery times (for full recovery) under recent and long-term climatology exceeded 20 609

years (Figure 4), whereas they were reduced to 5-10 years under the extraction cap (lower 610

recovery time for 50% extraction cap), which is a reduction by a factor of 2-4 times or more. 611

This is due to the greater number of occurrences when GWS depletion goes below the threshold 612

(thereby, extraction cap being implemented). Although our results show that implementation of 613

groundwater extraction caps can improve aquifer resilience to drought, we acknowledge that the 614

impact can vary regionally (south vs north CV), and the actual recovery times can vary. In 615
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particular, the southern CV has greater groundwater overdraft and groundwater dependence than 616 

the north. Therefore, the impact of extraction caps on the southern CV is expected to be higher. 617 

Moreover, reduction of groundwater extraction implies that there will be less water for irrigation, 618 

suggesting a decline in crop production. 619 

4.3 Evaluate the impact of climate change on post-drought recovery time 620 

We evaluated the relative influence of ET and inflow changes on groundwater overdraft 621 

recovery time and predicted how the recovery time is expected to change under future climate 622 

change. Figure 6 shows the changes in recovery times for different ET and inflow changes. 623 

Under historical average condition (average of 1982–2019), 2012–2016 groundwater overdraft 624 

was impossible to fully recover as evident from the location of black dot in the unsustainable 625 

zone (Figure 6a). However, a marginal increase in average inflow can have a major impact on 626 

recovery time when moving from the no-recovery zone to the recovery zone (recovery zone is 627 

shown by color shades in Figure 6a). For instance, a 10% increase in average inflow (assuming 628 

ET remains the same) will have a recovery time of ~30 years, whereas a 20% increase will have 629 

a recovery time of ~9 years (~5 years for 30% increase). However, reducing the recovery time to 630 

1-2 years requires a much greater increase in average inflow. Increases in inflow of around 43% 631 

and 60% (compared to the average condition and assuming no ET change) are required for 632 

recovery times of 1 and 2 years, respectively. In the past two decades, inflows for almost all 633 

years (except years 2010, 2011, 2017, and 2019) were less than the long-term average. While 634 

past inflow variability was high (coefficient of variation of annual inflow = 0.32), ET variations 635 

were much less (coefficient of variation of annual ET = 0.05).  636 
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 637
Figure 6. Sensitivity of GWS overdraft (from 2012–2016 drought) recovery time to changes 638

in inflow and ET (a-c). The colors show recovery time bands for different ranges of months. (a) 639

The black dot represents the average historic condition (1982–2019). Projected changes in inflow 640

and ET are shown for (b) RCP4.5 and (c) RCP8.5 scenarios over the sensitivity map (projected 641

changes were obtained from Alam et al. (2019)). The color of the dots (b-c) represents projected 642

changes for three periods 2020s (2010-2039), 2050s (2040-2069), and 2080s (2070-2099). 643

The projected changes in the recovery time map move further from the average condition 644

into the no-recovery zone, where the negative impact is higher for RCP8.5 (Figure 6c) compared 645

with RCP4.5 (Figure 6b). Overall, it is evident that historical conditions led to chronic 646

groundwater depletion where drought recovery will be difficult to achieve, whereas future 647
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climate will exacerbate the problem manyfold. Therefore, in addition to reducing groundwater 648 

use (as shown in section 4.2), increasing recharge of excess water can potentially have important 649 

impacts under future climate. Because future climate will change the seasonality of surface water 650 

inflow to the CV (increased winter flow and decreased summer flow) (Gergel et al., 2017; Li et 651 

al., 2017), more water is expected to leave the CV region during the winter season without being 652 

used or stored for later use. Earlier studies show that strategies, such as  managed aquifer 653 

recharge, can recharge excess surface water (Alam et al., 2021; Gailey et al., 2019; Scanlon et 654 

al., 2016; Wendt et al., 2021) and can potentially act as an important adaptation strategy to 655 

climate change. The method developed in this study to generate recovery time sensitivity map 656 

(Figure 6) can be a useful tool for water managers and planners to estimate post-drought duration 657 

required for overdraft recovery. This drought recovery time map is unique from any previous 658 

study and can be used to identify potential strategies to minimize the groundwater overdraft 659 

recovery times. 660 

5 Summary and conclusions 661 

Groundwater is a critical source of the CV’s water supply; however, the resource has 662 

been used unsustainably in the past, particularly during droughts, leading to progressive 663 

groundwater depletion. Quantifying drought-related groundwater depletion and post-drought 664 

recovery and understanding the role of climate and water management in recovering from 665 

overdraft is key to establishing a more sustainable management program. We have addressed 666 

these issues by quantifying drought-associated groundwater depletion and recovery for two 667 

recent droughts (2007–2009 and 2012–2016) using four methods, (GRACE satellite data, water 668 

balance approach, the C2VSIM model, and well-measurements). The study reveals the value of 669 

considering multiple methods for GWS estimation. Additionally, we used numerical experiments 670 

to estimate the probability of post-drought recovery times under different climatic conditions. 671 

Based on our analysis, we conclude that: 672 

 Groundwater storage in the CV declined by a median of 19 km3 (17-24 km3) and 26 km3 673 

(24-35 km3) during the 2007–2009 and 2012–2016 droughts, respectively based on the 674 

four methods. The median drought-related overdraft recovery was 34% and 13% during 675 
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the post-drought years 2010–2011 and 2017–2019, respectively. The relatively low 676 

recovery from the 2012–2016 overdraft is attributable to the very large overdraft 677 

compared to limited surface water availability during post-drought years. In general, 678 

estimates of GWS changes using different methods show similar patterns, but different 679 

magnitude. Because there is variability in GWS estimates from different methods that is 680 

expected to vary between regions, no one method can be identified as the best. Instead, 681 

the multi-method ensemble provides a better overall picture of GWS depletion and post-682 

drought recovery.  683 

 Surface water availability (surface inflows to the CV and precipitation) greatly influence 684 

the recovery of drought-associated groundwater overdraft. Recovery from drought-685 

related overdrafts is unlikely if the recent climatology (2003–2019) continues after the 686 

drought ends (less than 20% chance to fully recover in 20 years). This is because 687 

drought-related overdraft in the CV continues and accelerates long-term GWS depletion. 688 

Relative to replicated historical climatology, projected drought recovery times decrease 689 

by a factor of up to 3.6 for futures with no drought years and by a factor of 7.8 for futures 690 

with wet years only. The practical implication is that under current management policies, 691 

the CV aquifers are not resilient to drought events — appropriate management measures 692 

are needed to establish sustainability. 693 

 A cap on groundwater depletion would accelerate groundwater recovery considerably, 694 

especially if post-drought conditions are relatively dry. This is because groundwater 695 

extraction volume is larger during dry years and tends to exceed any extraction cap more 696 

often than for the case of wet climatology when the cap is rarely implemented. Overdraft 697 

recovery times decreases by ~2x with implementation of pumping restrictions to 698 

constrain groundwater depletion relative to no restrictions under no-drought climatology, 699 

with ~2-4x or more if climatology remains at the historical levels. This indicates the 700 

important role of reducing groundwater extraction to accelerate overdraft recovery and 701 

establish groundwater sustainability. 702 

 The CV aquifer is currently managed unsustainably, hence full post-drought recovery is 703 

difficult (if not impossible) under the historical average (2003–2019) headwater inflows 704 

and crop water use conditions. A marginal increase in average inflow can have a 705 
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substantial impact on drought recovery time. An increase in headwater inflow from 10% 706 

to 20% (of historic average) would reduce the drought recovery time from 30 years to 9 707 

years. In addition, climate change will make it more challenging to recover from drought-708 

related overdrafts. 709 
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