Asymmetry of Western U.S. river basin sensitivity to seasonally varying climate warming

Zhaoxin Ban and Dennis P. Lettenmaier

1Department of Geography, University of California Los Angeles.

Corresponding author: Dennis P. Lettenmaier (dlettenm@ucla.edu)

Key Points:

• Controls on annual streamflow relative response to seasonal warming (asymmetry) are similar for large and HUC-8 basins across Western U.S.
• Vegetation enhances, while long-term snowpack-decline reduces, the asymmetry of annual streamflow response to seasonal warming.
• Radiation, vapor pressure deficit, and surface resistance dominate the asymmetry in cold, moderate, and warm basins respectively.

Abstract

Future climate warming over the Western U.S. (WUS) is projected to be greater in summer than winter. Previous model-based studies of large watersheds in the WUS showed much different annual streamflow responses to warming in warm vs. cool seasons. However, it remains unclear how are the annual streamflow relative responses to seasonal warming (asymmetry) and drivers of the response asymmetry vary across the entire WUS at the catchment-scale, and how the simulated results compare with observations. Here, we investigate the asymmetry of annual streamflow responses to warm vs. cool season warming at the HUC-8 level across the entire WUS using model simulations and observations. We also examine the asymmetries’ relationship with land surface and hydroclimate characteristics, and the primary contributor to the response asymmetry for
each HUC-8 basin. The HUC-8 level results reveal more complexity than do earlier analyses of much larger watersheds. Over 25% of WUS area has annual streamflow increases in response to warming in at least one season (mostly cool season). Annual streamflow is most sensitive to warm season warming in cool, inland basins, especially the northern Columbia River basin and most of the Upper Colorado River Basin, and most sensitive to cool season warming in warm, coastal basins. This bi-directional pattern is enhanced by vegetation coverage but weakened by long-term snowpack decline. In cold basins with short snow-free seasons, net radiation changes dominate the streamflow response asymmetry. For basins with intermediate temperature, vapor pressure deficit changes dominate the asymmetry. For warmest basins, surface resistance changes dominate.
1. Introduction

More than 26% of the global land area and ~8% of the global population depend on snowmelt as their dominant water resource (Qin et al., 2020). Water availability in snowmelt-dominated regions may change as snow accumulations decline under climate warming, threatening the regions’ economic, social, and ecological water uses (Adam et al., 2009; Barnett et al., 2005).

The Western U.S. (WUS) is typical of many snow-dominated regions. It has experienced notable changes in the seasonal timing of runoff (Stewart et al., 2004), the fraction of runoff attributable to snowmelt (Qin et al., 2020), and annual runoff decreases (Forbes et al., 2018; Milly & Dunne, 2020). Warming in the WUS is not evenly distributed on a sub-annual scale, with substantially larger warming in the warm season (Apr-Sep) than in the cool season (Oct-Mar) projected across most of the region (Ban et al., 2020; Das et al., 2011; Rupp et al., 2017). Different seasons’ warming in the snowmelt dominated basins of the WUS will alter streamflow volumes quite differently. Cool season warming causes slower snow accumulation and earlier snowmelt, which may exacerbate dry-season water scarcity due to reduced storable snowmelt (Li et al., 2017). Warm season warming may cause larger peak flows that will strain reservoir capacities and may cause larger evaporative losses in summer (Li et al., 2017). Both season’s warming may contribute to water scarcity, but their relative impact can substantially differ due to different seasonal warming magnitudes and seasonal sensitivities to warming (Ban et al., 2020; Vano et al., 2015). To better predict streamflow responses to climate warming and adapt to future water scarcity, understanding the streamflow sensitivity to seasonally varying climate warming is essential.
Only a few studies have examined the relative impact of differential seasonal warming on the streamflow sensitivity of WUS basins. Das et al. (2011) used the Variable Infiltration Capacity model (VIC) (Liang et al., 1994) to simulate streamflow responses to seasonal warming for four regionally important river basins in the WUS. Vano and Lettenmaier (2014) and Vano et al. (2015) quantified the streamflow sensitivity to seasonal warming in the Colorado River basin (at basin-scale), and the Pacific Northwest (HUC-8 level). Notwithstanding this work, the signature of streamflow responses to seasonal warming across the entire WUS remains unclear. Moreover, streamflow responses to seasonal warming have only been investigated at spatial resolutions higher than those of the major continental rivers by Vano et al. (2015) (HUC-8 level), and in that case only for USGS Hydrologic Region 17 (Pacific Northwest).

Our previous work (Ban et al., 2020) studied streamflow responses to seasonal warming for four regionally important river basins in the WUS using four hydrological models. It concluded that basins with two features have larger annual streamflow decreases for warm season as contrasted with cool season warming. One feature is relatively cool temperature; the other is relatively large ratio of warm season to cool season Gross Incoming Water, defined as initial water storage in soil and snow in the season plus the season’s precipitation (Ban et al., 2020). However, their analysis was based on relatively large basins (15,000 ~ 600,000 km² drainage areas), which suppresses spatial variability that might be apparent for smaller river basins. Moreover, the ability to explore the impact of other basin surface characteristics (apart from temperature and water availability) on the streamflow responses, and how the model simulations compared with observation-based
streamflow responses was limited by the large size, and small number of the basins analyzed in that study.

Here we expand the study area to the entire WUS at the HUC-8 level. We also explore observation-based annual streamflow sensitivities in comparison with model-based estimates, and evaluate the relative role of net radiation as drivers of annual streamflow sensitivity to seasonal warming under different potential evapotranspiration frameworks (Priestley-Taylor and Penman-Monteith). Our aim in enlarging the number of basins relative to Ban et al. (2020) goes beyond simply extending our earlier analysis. Rather, the higher granularity (HUC-8) allows us to explore issues that Ban et al. (2020) and Das et al. (2011) were unable to test or explain, including statistically meaningful evaluation of similarity between simulated and observational streamflow response signals, and how those responses vary with basin characteristics and hydroclimatic factors. We also go beyond our earlier work in providing a new proxy for directly calculating the main contributor to (annual) streamflow relative responses to seasonal warming (hereafter called response asymmetry). Motivated by these goals, we address here three questions:

(1) How does the annual streamflow response asymmetry vary spatially across the WUS at the HUC-8 scale, and what controls the associated spatial patterns?

(2) How does the streamflow response asymmetry at HUC-8 scale vary with different land surface characteristics, such as vegetation coverage, root depth, runoff ratio, and seasonal snow coverage?

(3) What are the primary contributors to annual streamflow response asymmetry for each HUC-8 basin, and do they vary across the WUS?
To address these questions, we first examine the annual streamflow responses to seasonal warming across the 616 HUC-8 basins using VIC model simulations (section 4.1) and compare the simulated sensitivities with those estimated from observations (section 4.2). We then examine the variation of annual streamflow responses to seasonal warming with different hydroclimatic and land surface characteristics (sections 4.3 and 4.4). Finally, we attribute and quantify the contribution of different ET-related processes to streamflow responses under seasonal warming across the 616 HUC-8 basins (section 4.5). We discuss the results in section 5 in light of a comparison between the streamflow response attribution using the Penman-Monteith framework as contrasted with the Priestley-Taylor framework in Milly and Dunne (2020), and end with conclusions in section 6.

2. Study area

Our study domain consists of the WUS and the Canadian part of the Columbia River Basin. Additionally, we added a buffer of one HUC-8 basin width east of the Continental Divide to examine whether this geographical divide also separates the characteristics of streamflow response to seasonal warming. The study area covers a wide range of hydroclimatic conditions and land surface characteristics, with elevations ranging from below sea level (~71 m) to around 3700 m (Figure 1a). A total of 616 HUC-8 basins are included in the study area, with an average drainage area of about 4000 km². We took HUC-8 basin boundaries from the USGS National Hydrography Dataset (https://viewer.nationalmap.gov/basic/?basemap=b1&category=nhd&title=NHD%20View).
Figure 1. 616 HUC-8 basins in our study area, which covers the WUS, the Canadian portion of the Columbia River Basin, and a set of buffer basins (red outlines) just east of the Continental Divide. (a) elevation (from Livneh et al. (2013)). (b) and (c): cumulative distribution functions (CDF) of long-term climatological basin-average annual precipitation (mm) and annual mean temperature (°C), averaged from water year 1951 to 2018 using the Livneh (L13) meteorological forcings (Livneh et al., 2013), and forcings extended to 2018 by Su (Su et al., 2021). (d) CDF of basin drainage areas.

3. Methods and data

3.1 Model and forcing data set

We conducted warming experiments using the VIC macroscale land-surface hydrology model (Liang et al., 1994) version (4.1.2). The VIC model forcings and
parameters are the same as in Ban et al. (2020). The analysis period differs, though, with water years 1915-1950 used for spinup and water years 1951-2018 used for analysis. We chose the VIC model for our simulations because the VIC model results were closer to the multi-model mean results and closer to observed hydrographs than other models in our previous work (Ban et al., 2020). The new analysis period was selected to allow us to check the robustness of the conclusions in Ban et al. (2020) for different simulation periods and because the forcing data quality is generally higher after 1950.

3.2 Annual streamflow response asymmetry under seasonal warming

We first calculated the temperature sensitivity of annual streamflow and evapotranspiration to warm and cool season warming by comparing baseline simulations with two seasonal warming simulations. We conducted the baseline simulation using historical L13 forcings, extended to 2018 by Su (Su et al., 2021). We set up the two seasonal warming simulations by adding 1°C to both daily maximum and minimum temperatures in every day of a) the warm season only, and b) the cool season only. Perturbing both maximum and minimum temperature ensures that the downward shortwave radiation generated by the Mountain Microclimate Simulation Model (MTCLIM) embedded in VIC (Bohn et al., 2013) is not changed. Downward and emitted longwave radiation from MTCLIM do change, as they are temperature-related. We isolated the warming impact on temperature sensitivity by keeping the precipitation unperturbed.

We calculated the temperature sensitivities of annual streamflow, annual evapotranspiration, and seasonal evapotranspiration as changes of their long-term averages (from water years 1951-2018) between a baseline and warmed scenarios, divided by the temperature increment (1°C). In all cases, temperature sensitivities are for each of the 616
HUC-8 basins. For pixels that are partially within a watershed, we counted the grid cell’s values weighted by their fractional area in the watershed.

We applied the same measure of response asymmetry to describe the relative responses of annual streamflow (Pref_Q) and evapotranspiration (Pref_{ET}) to seasonal warming, as was used in Ban et al. (2020) (Eqs. 1-2).

$$\text{Pref}_Q = \frac{Q_{a,w1d} - Q_{a,b}}{Q_{a,c1d} - Q_{a,b}} \quad \text{(Eq. 1)}$$

$$\text{Pref}_{\text{ET}} = \frac{ET_{a,w1d} - ET_{a,b}}{ET_{a,c1d} - ET_{a,b}} \quad \text{(Eq. 2)}$$

On the right hand of Eqs. 1-2, Q indicates streamflow, ET indicates evapotranspiration, the first subscript indicates the period of calculation (a: annual, w: warm season, and c: cool season), and the second subscript indicates the warming scenario ($w1d$: warm season 1°C warming, $c1d$: cool season 1°C warming, and b: baseline). Therefore, Pref_Q (Pref_{ET}) is defined as the ratio of annual streamflow (annual evapotranspiration) changes in response to a constant warming magnitude (1°C) in warm season only to the same change in cool season only. A more positive Pref_{ET} (Pref_Q) indicates a stronger “preference” for a basin to have stronger annual evapotranspiration (streamflow) response under warm vs. cool season warming. A negative Pref_{ET} (Pref_Q) means that the annual evapotranspiration (streamflow) responses have opposite signs under the two seasonal warming. According to the long-term water balance, when the annual soil and snow storage change is negligible and precipitation is fixed, the annual streamflow reduction under temperature warming equals the annual evapotranspiration increase. Under this water balance framework, Ban et al. (2020) made two critical assumptions: (a) Pref_Q
\(\approx \text{Pref}_{\text{ET}}, \) and (b) the relative rank of \(\text{Pref}_{\text{ET}} \) across basins is governed by the relative rank of the seasonal ET-T sensitivity ratios (ratios of warm season ET-T sensitivity to cool season ET-T sensitivity, see Eq. 3, the notation is the same as in Eqs. 1-2).

\[
\text{rank}(\text{Pref}_{\text{ET}}) = \text{rank} \left(\frac{\text{ET}_{\text{w},\text{w1d}} - \text{ET}_{\text{w},\text{b}}}{{\text{ET}}_{\text{c},\text{ctd}} - \text{ET}_{\text{c},\text{b}}} \right) \quad (\text{Eq. 3})
\]

Ban et al. (2020) tested the above two assumptions for four major river basins in the WUS (the Columbia, the Upper Colorado River basin (hereafter UCRB), and the Northern Sierra and Southern Sierra basins). Here, we tested the two assumptions by comparing the \(\text{Pref}_{\text{ET}}, \text{Pref}_Q, \) and seasonal ET-T sensitivity ratios across all 616 HUC-8 basins.

3.3 Annual streamflow response asymmetry estimated from observations

We checked whether our model-based streamflow response asymmetry could be reproduced using observations of annual streamflow from two sources: (i) USGS GAGES Version 2 (GAGES II) reference database, which are identified as stations with minimum anthropogenic disturbances (Falcone, 2011), and (ii) USGS WaterWatch streamflow data (Brakebill et al., 2011), which provides a relatively complete set of streamflow data at the HUC-8 level from water year 1951 to 2018. In the GAGESII database, we only chose the gages with more than 20 years that have more than \(\sim 11 \) months (335 days) record each year, resulting in 513 GAGESII stations. We also performed a screening of the WaterWatch records to remove the HUC-8 basins with USGS stations affected by large dams. Specifically, we identified large dams as having storage capacity greater than a quarter of the long-term average annual streamflow based on data from the Global Reservoir and Dam Database (GRanD v1.3) (Lehner et al., 2011). This screening yielded
286 HUC-8 basins as having annual flows that are at most modestly affected by reservoir regulations.

For each selected GAGESII station’s contributing watershed and each screened WaterWatch HUC-8 basin, we calculated the corresponding annual precipitation (P_a) and seasonal mean temperature (T_w and T_c) from VIC model outputs. We applied linear regression at each of the 513 GAGESII stations across years with more than 11 months record, and 286 screened WaterWatch HUC-8 basins across water year 1951 to 2018 using annual streamflow (Q_a) as the dependent variable, and P_a, T_w, and T_c as predictors (Eq. 4).

$$Q_a = S_w T_w + S_c T_c + S_p P_a$$ (Eq. 4)

In Eq. 4, S_w, S_c, and S_p are the regression coefficients. $Pref_Q$ thus is estimated as S_w/S_c. In section 4.2, we focus more on the $Pref_Q$ estimates for basins that have both statistically significant (p=0.1) S_w and S_c.

3.4 Relationships between annual streamflow response asymmetry and basin characteristics

We checked the variations of seasonal ET-T sensitivity (a proxy governing streamflow response asymmetry, tested in sections 3.2 and 4.1) with temperature and seasonal water availability at the HUC-8 basin level. We used simulated basin-average temperature and Gross Incoming Water, and basin-aggregated seasonal evapotranspiration across the 616 HUC-8 basins from the VIC control experiment outputs to carry out the check. In addition to the above two hydroclimate variables, we also incorporated seven basin land surface and hydroclimatic characteristics: elevation, vegetation height, vegetation density, root depth, runoff ratio, annual mean snow cover fraction, and annual
mean snow water equivalent (SWE). We classified the 616 HUC-8 basins based on the seven characteristics and examined how the asymmetries of seasonal ET-T sensitivity and annual streamflow response to seasonal warming vary with the seven characteristics above.

The elevation data (1/16th degree) came from Livneh et al. (2013), which in turn was aggregated from the GTOPO30 Global 30 Arc Second (~1km) Elevation Dataset (https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects). Runoff ratio, snow cover fraction, and SWE came from the VIC baseline simulation outputs (L13). We defined vegetation density as the product of the annual mean leaf area index (LAI) and the vegetation cover fraction for each vegetation type and summed for each pixel. We calculated the root depth for each pixel as the sum of root depth for each vegetation type weighted by the vegetation cover fraction. Data used for calculating vegetation density and root depth above all come from the VIC vegetation parameters. The data used for calculating the vegetation height came from the NLDAS UMD vegetation classification scheme (https://ldas.gsfc.nasa.gov/index.php/nldas/vegetation-class) and parameters (https://ldas.gsfc.nasa.gov/nldas/vegetation-parameters).

3.5 Detection of the processes dominating ET-T sensitivity

We considered five major processes that affect evapotranspiration change under temperature warming, as derived using a Penman-Monteith framework (e.g. Ban et al. (2020) and Yang et al. (2019)): (a) change of available radiation (R^*, net radiation minus ground heat flux) due to processes like albedo change during snowmelt, (b) enhanced vapor-pressure deficit (e_v-e_a) associated with warming, (c) increased surface resistance (r_s)
associated with elevated vapor pressure deficit, (d) reduced aerodynamic resistance \(r_a \) over warmer, less stable land surfaces, and (e) elevated slope of the saturated vapor pressure \(\delta \) associated with warming. We estimated contributions of the five processes to seasonal ET-T sensitivity using a Penman-Monteith first-order derivative expansion based on differences between the two season’s warming scenarios and baseline, which is the same as in section 3.6 in Ban et al. (2020).

4. Results

4.1 Asymmetry of annual streamflow responses to seasonal warming

To check the similarity between the seasonal ET-T sensitivity ratio (see Eq. 3), \(\text{Pref}_Q \), and \(\text{Pref}_{ET} \) (see Eqs. 1-2), we plotted their spatial distributions (model-simulated) at the HUC-8 level (Figure 2a-c). The three proxies show highly consistent spatial patterns (pattern correlation: \(\text{Pref}_{ET} \) vs. \(\text{Pref}_Q \): 0.995, \(\text{Pref}_Q \) vs. \(\Delta T_{\text{ET}} \): 0.796, \(\text{Pref}_{ET} \) vs. \(\Delta T_{\text{ET}} \): 0.795, calculated using samples within 5% and 95% percentile of the proxies to remove outliers), which echo the Ban et al. (2020) results for larger basins (see smaller panels in Figures 2a-2c, values in which are consistent with the cumulative effect expected from the HUC-8 basins involved). Additionally, proxies for HUC-8 basins east of the Continental Divide act mostly like neighbors west of the divide, suggesting strong spatial continuity.

In general, among basins with positive \(\text{Pref} \) values, basins with larger responses to warm season warming (higher \(\text{Pref} \) values) are located within the northeast part of the study domain. Basins with smaller responses to warm season warming (lower \(\text{Pref} \) values) are located within the southwestern part of the study domain (Figures 2a-c). This southwest-northeast gradient in \(\text{Pref} \) values generally coincides with the direction of decreasing
annual temperature and increasing warm vs. cool season Gross Incoming Water ratio (Figures 2d and 2e), which follows the conclusion in Ban et al. (2020).

Figure 2. Proxies of response asymmetry and related variables. (a) Pref_Q, (b) Pref_ET, and (c) seasonal ET-T sensitivity ratio (dET_t) under 1°C warm and cool season warming from the VIC-4.1.2 model results for HUC-8 watersheds, averaged from the water year 1951 to 2018. The small panels illustrate the basin-average values from multi-model mean results in Ban et al. (2020). (d) basin average annual mean temperature, (e) GIW_r: ratio of basin average warm season Gross Incoming Water (GIW) to basin average cool season GIW, (f) basin average annual precipitation. All values in (d) to (f) are based on climatologies from...
The HUC-8 level maps of the three proxies (Figures 2a-c) however reveal more complexity than do the larger basin maps, especially concerning negative Pref values. In Ban et al. (2020), multi-model mean Pref values for all four basins were positive, but at the HUC-8 level, negative Pref values are present for some watersheds and usually are clustered. Negative Pref$_{ET}$ or Pref$_{Q}$ values are caused by annual evapotranspiration decrease or annual streamflow increase only under one of the two seasonal warming cases (mostly under cool season warming). No basin has annual evapotranspiration (streamflow) decreases (increases) under both warming scenarios. Therefore, the positive Pref$_{ET}$ and Pref$_{Q}$ values are only related to the annual evapotranspiration (streamflow) increase (decrease) under both warming scenarios. The Columbia Basin has the largest area with negative Pref values, which cluster in the southern part of the basin (mostly arid to semi-arid, and borders on the Great Basin). The UCRB has negative Pref values in the northeastern part, while the two California basins have no negative Pref values. To further explore the relationship between seasonal responses and the sign and magnitude of Pref, we classified the basins into snow-affected (basin long-term mean Apr 1st SWE \geq 20mm) and non-snow-affected group (basin long-term mean Apr 1st SWE < 20mm). We divided each group into four subgroups according to different signs and magnitudes of Pref values (Figure 3):

A. Snow-affected (SA) group. 301 of 616 basins (48.86\%) (the colored basins in the first row of Figure 3).

A1. Pref positive and larger than 1.0, colored in red in Figures 3a-3b. In such basins, annual evapotranspiration (streamflow) increases (decreases) are stronger under warm
season warming than under cool season warming. 218 of the 301 snow-affected basins for Pref$_{ET}$ (72.4%) and 209 of 301 snow-affected basins for Pref$_{Q}$ (69.4%) had these characteristics. Most of them coincide with ET-T sensitivity ratios that are positive and larger than 1.0 (colored red in Figure 3c).

A2. Pref positive and smaller than 1.0, colored in brown in Figures 3a-3b. In such basins, annual evapotranspiration (streamflow) increases (decreases) are stronger under cool season warming than under warm season warming. 61 of 301 snow-affected basins for Pref$_{ET}$ (20.3%) and 67 of 301 snow-affected basins for Pref$_{Q}$ (22.3%) had these characteristics. Most of them coincide with ET-T sensitivity ratios that are positive and smaller than 1.0 (colored brown in Figure 3c).

A3. Pref negative and smaller than -1.0, colored in dark blue in Figures 3a-3b. 19 of 301 snow-affected basins for Pref$_{ET}$ (6.3%), and 22 of 301 snow-affected basins for Pref$_{Q}$ (7.3%) had these characteristics. Most of them coincide with the ET-T sensitivity ratios that are more negative than -1.0 (colored dark blue in Figure 3c). The 19 negative Pref$_{ET}$ values are all caused by annual evapotranspiration decreases under cool season warming. Among these 19 basins, responses for 10 basins are contributed solely by cool season evapotranspiration decreases, responses for 5 basins are contributed solely by warm season evapotranspiration decrease, and responses for four basins are contributed by both warm and cool season evapotranspiration decreases (Figure S2a). Among the 22 negative Pref$_{Q}$ values, 19 are caused by cool season streamflow increases under cool season warming, and 3 are caused by warm season streamflow increases under warm season warming (Figure S2b). The latter three basins are in the northern part of the Columbia basin, at high elevation with short snow-free seasons and relatively lower vegetation density and
shallower root depths than the surroundings (Figure S1). They have much later snowmelt season end dates than low elevation basins and have streamflow increases only in the warm season. The annual streamflow increase magnitudes in these three basins are relatively small (all less than 1%). These three basins do not have annual evapotranspiration decreases, suggesting that the slight annual streamflow increases at these three high elevation basins are associated with snowpack declines.

A4. Pref negative and larger than -1.0, colored light blue in Figures 3a-3b. 3 of 301 snow-affected basins (1.0%) for both PrefET and PrefQ had these characteristics. Most of them coincide with ET-T sensitivity ratios that are less negative than -1.0 (colored light blue in Figure 3c). The negative Pref values are caused by annual evapotranspiration decreases (annual streamflow increases) under cool season warming, which have a smaller magnitude than the opposite response under warm season warming. All the three annual evapotranspiration decreases (annual streamflow increases) are solely contributed by cool season evapotranspiration decreases (streamflow increases).

For conditions A3 and A4, excepting the three high elevation basins in the northern Columbia River Basin for which annual streamflow increases under warm season warming, all other basins with negative Pref values experienced annual evapotranspiration decreases (annual streamflow increases) under cool season warming. Spatially, these latter basins are mostly located within or at the boundary of the cold desert region (Ecoregion Level-II classification: https://www.epa.gov/eco-research/ecoregions-north-america) in or near the Great Basin, and the West-Central semi-arid prairies area in the northeastern buffer zone of the Columbia River Basin boundary (Figures 3a-3b). Such regions have moderate temperatures (Figure 2d), moderate elevations (Figure S1e), low precipitation (Figure 2f),
low runoff ratios (Figure S1d), low vegetation coverage (Figures S1a-S1b), and low snow coverage (Figures S1f-S1g). For these basins, the warm season evapotranspiration decreases under cool season warming can be explained by the Dettinger hypothesis (Dettinger et al., 2004): under cool season warming, earlier snowmelt releases water exiting the basin before summer comes, which leaves less water available for evapotranspiration later in the year (i.e., warm season). Possible reasons for the small decreases (all <5%) of cool season evapotranspiration under cool season warming (colored in cyan in Figure S2a) are: 1) those basins are mostly water-limited, thus relatively insensitive to elevated evaporative demand under warming (Condon et al., 2020); 2) warming melts snow more rapidly, which enables a larger portion of snowmelt to become streamflow or to penetrate into deeper soil layers without being sublimated, which is the dominant cool season evapotranspiration process in these basins (Table S1); 3) those basins usually have thin and sparse snow coverage in the cool season. In this context, warming can cause temporally discontinuous snow coverage within the cool season, thus extending the cool season’s water-limited period.

B. Non-snow-affected (nonSA) group. 315 of the 616 basins (51.1%) were in this group (the colored basins in the second row of Figure 3).

B1. Positive Pref greater than 1.0 (colored red in Figures 3d-3e). Annual evapotranspiration increases (annual streamflow decreases) are stronger under warm season warming than under cool season warming in these basins, of which there are 60 for Pref\textsubscript{ET} (19.0%), and 59 for Pref\textsubscript{Q} (18.7%). Most of these basins have ET-T sensitivity ratios that are positive and larger than 1.0 (colored in red in Figure 3f).
B2. Positive Pref, less than 1.0, colored in brown in Figures 3d-3e. Annual evapotranspiration increases (annual streamflow decreases) are stronger under cool season warming than under warm season warming for these basins, of which there are 151 for Pref$_{ET}$ (47.9%) and 154 for Pref$_Q$ (48.9%). Most of them have ET-T sensitivity ratios that are positive and smaller than 1.0 (colored in brown in Figure 3f).

B3. Negative Pref, more negative than -1.0, colored in dark blue in Figures 3d-3e. 35 basins fall into this category for Pref$_{ET}$ (11.1%) and 36 for Pref$_Q$ (11.4%). Most of these basins coincide with ET-T sensitivity ratios that are negative and smaller than -1.0 (colored in dark blue in Figure 3f). The negative Pref$_{ET}$ and Pref$_Q$ values are caused by annual evapotranspiration decreases and annual streamflow increases under cool season warming.

For the 35 basins with annual evapotranspiration decreases, 25 are associated solely with cool season evapotranspiration decreases, seven are associated solely with warm season evapotranspiration decreases, and three have both cool season and warm season evapotranspiration decreases (Figure S2a). For the 36 basins with annual streamflow increases, 26 are contributed solely by cool season streamflow increases, and 10 have both warm and cool season streamflow increases (Figure S2b). All these basins are located within or near the boundary of cold desert areas. The decreasing warm season evapotranspiration under cool season warming is due to stronger soil moisture deficits in the beginning of the warm season following enhanced evapotranspiration during cool season warming. Possible reasons for the decreasing cool season evapotranspiration under cool season warming are the same as we discuss for A3 and A4 above.

B4. Negative Pref, less negative than -1.0, colored in light blue in Figures 3d and 3e. 69 of 315 non-snow-affected basins for Pref$_{ET}$ (21.9%) and 66 Pref$_Q$ (21.0%) had these
characteristics. Most of them coincide with ET-T sensitivity ratios that are less negative than -1.0 (colored in light blue in Figure 3f). For the 69 basins that have negative Pref$_{ET}$, 27 basins are associated with warm season evapotranspiration decreases under warm season warming, 39 are associated with cool season evapotranspiration decreases under cool season warming, and three basins are associated with both warm and cool season evapotranspiration decreases under cool season warming. For the 66 basins with negative Pref$_{Q}$, 25 are dominated by cool season streamflow increases under warm season warming, and 41 are dominated by cool season streamflow increases under cool season warming. The 27 basins with warm season evapotranspiration decreases (which includes the 25 basins with cool season streamflow increases) under warm season warming fall into the warm desert Ecoregion Level-II classification (reddish color in Figures S2a and S2b) near the Mojave and Sonoran Deserts. The warm desert regions generally have low precipitation (Figure 2f), low vegetation coverage (Figures S1a and S1b), as well as low snow coverage (Figures S1f and S1g), low runoff ratios (Figure S1d), low elevation (Figure S1e) and higher temperatures (Figure 2d) as compared to the cold desert type. These basins are very arid and have limited streamflow, with maximum basin average annual streamflow less than 40 mm, relative increases of annual streamflow less than 1%. The warm season evapotranspiration decreases under warm season warming in these 27 basins are mostly due to elevated surface resistance associated with warmer temperatures, which is supported by the high surface temperature part (>20 °C) in Figure S3.

In general, the basins with negative Pref values (126 basins for Pref$_{ET}$ and 127 basins for Pref$_{Q}$) are in low elevation, arid regions with high temperatures and little snow coverage. These basins contribute slightly less than 9% of the total streamflow for all 616
HUC-8 basins in the WUS, according to the VIC simulation results. Although these basins have streamflow increases under certain warming scenarios, their streamflow increases tend to be small and far from enough to compensate for streamflow declines elsewhere across our WUS domain.
Figure 3. Map of 616 HUC-8 basins categorized based on snow-affected (SA: mean Apr 1st SWE > 20mm) or non-snow affected (nonSA: mean Apr 1st SWE < 20mm) conditions;
signs of \(\text{Pref}_{\text{ET}}, \text{Pref}_Q, \) and \(\text{ET-T} \) sensitivity ratios (\(\text{dET}_n \)), and their absolute values relative to 1.0 for the three indices (shown separately in subplots a-f).

4.2 Observation-based asymmetry of annual streamflow responses to seasonal warming

We compared all of the observation-based and VIC model-simulated \(\text{Pref}_Q \) (Figures 4a and 4b) on a point-by-point basis and found that, despite differences between observation-based and simulated estimates, they share similar probability distributions, and are roughly similar in their variations with air temperature, especially the basins with statistically-significant temperature regression coefficients (\(S_w \) and \(S_c \), at \(p=0.1 \) level) (Figures 4 and S4). Comparison of Figures 4a and 4b shows that \(\text{Pref}_Q \) values estimated using WaterWatch have a better match with VIC-simulated ones than do the GAGESII (USGS Reference) gauges, probably because the WaterWatch basin areas (mean drainage area 3180 km\(^2\)) are larger than the GAGESII ones (mean drainage area 520 km\(^2\)). Both Figures 4a and 4b show decreasing \(\text{Pref}_Q \) (both model- and observation-inferred) as temperature increases, despite the different spatial coverage between the two datasets (Figure S5). This decreasing trend echoes the pattern of lower \(\text{Pref}_Q \) under warmer temperature found from multiple model simulations in Ban et al. (2020). We also conducted two similar comparisons for \(S_w \) and \(S_c \) separately (Figures S6 and S7), and compared \(\text{Pref}_Q \) spatially (Figure S5), which also show some hint of similarity. The above results provide some data support to the simulated patterns and interpretations of simulated asymmetry in the following sections.

A high fraction of temperature coefficients estimated from Eq. 4 are statistically insignificant (only 30 out of 513 gages, and 31 out of 286 basins are statistically significant at significance level=0.1). Nonetheless, the significant coefficient fractions (5.8% and
10.8%) are still much larger than that can be attributed to chance (0.1*0.1=0.01=1%). Considering all the above, we argue that the similarity between model- and observation-inferred Pref\(Q\) distribution is not coincidental, which adds credibility to our model-based results.

![Figure 4](image.png)

Figure 4. Point-by-point comparisons between VIC-simulated and observation-based Pref\(Q\), for (a) GAGESII basins, and (b) WaterWatch HUC-8 basins. Crosses highlight the basins that have statistically significant (\(p=0.1\)) temperature regression coefficients in Eq.4, and other points show all basins’ estimates.

4.3 ET-T sensitivity as a function of temperature and gross incoming water

In section 4.1, we confirmed the similarity between the seasonal ET-T sensitivity ratios and the Pref values. Here, we examine another conclusion in Ban et al. (2020) relative to the variation of ET-T sensitivity with temperature and Gross Incoming Water (see Section 1 for definition) at the HUC-8 level. Warm and cool season ET-T sensitivities from each of the 616 HUC-8 basins are plotted together as a function of seasonal surface temperature and LOWESS-smoothed into a red curve in Figure 5a. In Figure 5b,
relationships between ET-T sensitivities and Gross Incoming Water are plotted as scatterplots separately for warm and cool season.

The increasing-to-decreasing pattern (above -5°C) of ET-T sensitivity as temperature increases (Figure 5a) and the positive relationship between ET-T sensitivity and Gross Incoming Water (Figure 5b) confirm the findings in Ban et al. (2020): i) ET-T sensitivity increases (decreases) with temperature in cool (warm) environments, so cooler basins have a higher ratio of warm to cool season ET-T sensitivity, thus higher Pref values; and ii) higher water availability favors higher ET-T sensitivity, so among basins with similar temperatures, a higher warm-to-cool-season Gross Incoming Water ratio favors a higher ET-T sensitivity ratio, thus higher Pref values. These relationships support the southwest-to-northeast increasing Pref values (Figures 2a-2b), west-to-east increasing Gross Incoming Water ratio (Figure 2e), and southwest-to-northeast decreasing annual mean temperature across the WUS (Figure 2d, which is a consequence of the both south-to-north increasing latitude and west-to-east increasing elevation), as identified in Section 4.1. We further separated the basins into snow-affected and non-snow-affected subgroups to evaluate the patterns (Figure S8) and found that the patterns in Figures 5a and 5b above are generally consistent in both subgroups.
Figure 5. (a) ET-T sensitivity as a function of seasonal surface temperature (Tsurf). The red curve is LOWESS-smoothed from the seasonal values from each of the 616 HUC-8 basins. Both warm and cool season values are plotted in panel a). The LOWESS-smooth span parameter is 0.5; shading denotes the confidence interval (level=0.95) for the possible locations of the smoothed lines. The lower 1st and upper 99th percentiles of cool season temperature basins are excluded as outliers and are not plotted in this figure. (b) Relationship between ET-T sensitivity and Gross Incoming Water (GIW: initial water storage in soil and snow in the season plus the season’s precipitation). Red (blue) points are for warm (cool) season. Each point denotes a basin’s basin-average value.

4.4 Streamflow response asymmetry and ET-T sensitivity asymmetry across basin characteristics

Here we focus on the relationship among basin surface characteristics (other than temperature and water availability discussed above), the asymmetry of annual streamflow response to seasonal warming, and seasonal ET-T sensitivity asymmetry. We calculated
seven basin characteristics for each of the 616 HUC-8 basins with VIC parameters and simulations (as described in section 3.4): vegetation height, vegetation density, root depth, runoff ratio, elevation, climatological annual mean snow water equivalent (SWE), and climatological annual mean snow cover fraction (see Figures S1a-g for maps). We also calculated the annual streamflow response asymmetry and ET-T sensitivity asymmetry for each of the 616 HUC-8 basins, in the form of \(\text{SUB}_Q \) and \(\text{SUB}_{ETS} \) (defined in Eqs. 5-6, notation is the same as in Eqs. 1-3, where \(Q \) indicates streamflow, and ETS is short for ET-T Sensitivity).

\[
\text{SUB}_Q = (\overline{Q}_{a,b} - \overline{Q}_{a,w1d}) - (\overline{Q}_{a,b} - \overline{Q}_{a,c1d}) \quad \text{(Eq. 5)}
\]

\[
\text{SUB}_{ETS} = (\overline{ET}_{w,w1d} - \overline{ET}_{w,b}) - (\overline{ET}_{c,c1d} - \overline{ET}_{c,b}) \quad \text{(Eq. 6)}
\]

By construct, a more positive value of \(\text{SUB}_Q \) or \(\text{SUB}_{ETS} \) means stronger annual streamflow (evapotranspiration) decreases (increases) under warm vs. cool season warming.

We plotted the 616 HUC-8 basins’ \(\text{SUB}_Q \) and \(\text{SUB}_{ETS} \) (model-estimated) together with their (seven) basin characteristics and LOWESS-smoothed the results in Figures 6a-6g. To highlight the relationship among \(\text{SUB}_Q \), \(\text{SUB}_{ETS} \) and basin surface characteristics apart from temperature impacts, we parsed the 616 basins into three zones according to long-term annual mean air temperature (cool: < 4°C, moderate: 4~12°C, warm: >12°C). We also plotted scatterplots corresponding to Figures 6a-6g in Figures S9 and S10, with long-term average annual mean precipitation indicated by colors.
Figure 6. Variation of asymmetry of seasonal ET-T sensitivity (SUB\textsubscript{ETS}), and asymmetry of annual streamflow response to seasonal warming (SUB\textsubscript{Q}) with (a) vegetation height, (b) vegetation density, (c) root depth, (d) runoff ratio, (e) elevation, (f) climatological annual mean SWE, and (g) climatological annual mean snow cover fraction, in three different temperature zones divided according to long-term average annual mean air temperature (Cool: <4°C, Moderate: 4~12°C, and Warm: >12°C) across the HUC-8 basins. Each plot shows LOWESS-smoothed curves of scatterplots (points are not plotted for clarity) between the asymmetries and basin characteristics using values from each 616 HUC-8 basins. The LOWESS-smoothing span parameter is 1.0, shading is as in Figure 5a.

Figures 6a-c suggest that the increasing SUB\textsubscript{ETS}, SUB\textsubscript{Q} is associated with higher, denser, and deeper vegetation structure in cool zones, while in warm zones the relationship is reversed, and in moderate regions the relationship lies between the two. This is understandable within the VIC model configuration: higher vegetation increases evaporation by increasing roughness length and aerodynamic resistance; denser vegetation
increases transpiration by reducing canopy resistance; and deeper root increases transpiration by supporting more water extraction. Therefore, more vegetation enhances the asymmetry of annual evapotranspiration response to seasonal warming, leading to a stronger preference for warm season warming (i.e., more positive SUB_Q and SUB_{ETS} with increasing vegetation) in the cool zones, and contrastingly, a stronger preference for cool season warming (i.e., more negative SUB_Q and SUB_{ETS} with increasing vegetation) in the warm zones.

Figure 6d shows the variation of SUB_{ETS} and SUB_Q with runoff ratio. In cool zones, a higher runoff ratio generally means more rapid spring snowmelt and cooler snowpack, which indicates less sensitive winter snowpack to cool season warming, and more evaporable snowmelt remains in warm season, leading to a stronger preference for evapotranspiration increase under warm season warming (i.e., more positive SUB_Q and SUB_{ETS}) for runoff ratio <0.5. For runoff ratio > 0.5, the basins have deep snowpacks and can experience net snowpack decrease on a long-term scale, generating extra streamflow increase (i.e., sum of annual streamflow and evapotranspiration change larger than zero). In such basins, warm season warming causes more snowmelt and thus more extra streamflow increases than cool season warming, which reduces SUB_Q. This tendency is stronger in cooler basins with deeper snowpacks and higher runoff ratios, leading to decreasing preference for warm season warming (i.e., decreasing SUB_Q). In warm zones, a higher runoff ratio favors higher precipitation, which generally corresponds to coastal regions (Figures 2d, 2f, S1d) and greater precipitation in winter vs. summer (Figure 2e), leading to a stronger preference for cool season warming (i.e., more negative SUB_Q and SUB_{ETS}).
Figure 6e shows relationships among SUB_{ETS}, SUB_Q, and elevation. Across the three temperature zones, there is no significant increasing or decreasing pattern, indicating that elevation’s impact on asymmetry mostly comes from its influence on temperature and precipitation (also see Figures S9-S10), excluding which the remaining impact is insignificant.

The curves in Figures 6f-6g share similar patterns. In cool zones, higher SWE and snow cover fraction favors lower temperature, more water available for evapotranspiration in the warm season, and less sensitive snowmelt (and thus evapotranspiration) to warming in the cool season, thus higher SUB_{ETS}. SUB_Q is smaller than SUB_{ETS} and started to decline for cool zones with SWE > ~200 mm and snow cover fraction > ~0.6, which is due to net snowpack decrease as discussed above. In moderate zones, SUB_{ETS} and SUB_Q generally increase with higher SWE and snow cover fractions, which relates to lower temperatures.

In warm regions, the snow coverage and SWE are both very low, so the snow impact is not substantial (as shown in Figures S9t-u and S10t-u).

The similarity of curve shapes across Figures 6a-d and 6f-g can be explained by the spatial coincidence of the above basin characteristics. Regions with more abundant snowpack (higher SWE, snow cover fraction) usually support higher runoff ratio and vegetation growth (Figures S1a-d, S1f-g). Across Figures 6a-g, regions with high values of the asymmetry all tend to have lower temperatures. They especially tend towards moderate elevations-high latitude parts of the domain (the northern part of the Columbia River Basin in particular) and moderate latitude-high elevation regions (the northern and eastern parts of the UCRB) (Figures 2d and S1h).
Taken over Figures 6a to 6g, the \(\text{SUB}_{\text{ETS}} \) generally is lower than the \(\text{SUB}_{\text{Q}} \) in warm zones and at lower values of the seven basin characteristics for the other two temperature zones, which corresponds with warmer, more arid regions. The \(\text{SUB}_{\text{ETS}} \) generally is higher than the \(\text{SUB}_{\text{Q}} \) when the values of the seven basin characteristics are higher, corresponding to cooler, more humid basins. The smaller \(\text{SUB}_{\text{ETS}} \) relative to the \(\text{SUB}_{\text{Q}} \) are due to the compensating effect of warm season evapotranspiration decreases under cool season warming, as discussed in Ban et al. (2020). The larger \(\text{SUB}_{\text{ETS}} \) relative to the \(\text{SUB}_{\text{Q}} \) generally occur for basins with high snow cover fraction and high SWE, which leads to situations where the net snow storage decline can be non-negligible (Mote et al., 2005; Mote et al., 2018), as discussed above. In other words, long-term snow storage decline mitigates the general trend of stronger streamflow responses to warm season warming at cooler regions, at the price of reducing snowpack.

4.5 Processes dominating streamflow response asymmetry across temperatures

Figure 7a shows the five primary ET-T sensitivity-related processes’ (see section 3.5 and Figure 7 captions) contributions to \(\text{SUB}_{\text{ETS}} \) (defined in Eq. 6) as a function of annual mean surface temperature. We calculated their contributions to \(\text{SUB}_{\text{ETS}} \) as their contributions to warm season ET-T sensitivity (described in section 3.5) minus those to cool season ET-T sensitivity. We added up the five processes’ estimated contributions to \(\text{SUB}_{\text{ETS}} \) (brown curve, Figure 7a), and found it mostly overlaps the \(\text{SUB}_{\text{ETS}} \) (red curve, Figure 7a), indicating the estimates are reliable. The process with the largest fractional contribution to \(\text{SUB}_{\text{ETS}} \) is identified as the dominant process on a HUC-8 basin basis (Figure 7b).
Figure 7. (a) LOWESS-smoothed asymmetry of ET-T sensitivity (SUBETS, see Eq. 6 for definition), estimated SUBETS, and contribution of the five major ET-related processes to the estimated SUBETS across values for each of the 616 HUC-8 basins, as a function of annual mean surface temperature; The five processes: Available radiation (R*), vapor pressure deficit (e_s-e_a), surface resistance (r_s), aerodynamic resistance (r_a), and slope of saturated vapor pressure curve (δ). (b) Dominant processes controlling SUBETS for each HUC-8 basin. The LOWESS-smoothing span parameter and shading denotation are the same as the ones in Figure 5a.

Figure 7 suggests that different processes dominate the asymmetry of ET-T sensitivity (SUBETS) under seasonal warming at different temperatures. The contribution of available radiation change to the ET-T sensitivity asymmetry increases as cooler basins warm (Figure 7a). However, the difference in available radiation changes between warm and cool season warming contributes most to the asymmetry of ET-T sensitivity for only
5 of the 616 basins, all of which are at the highest latitudes (> 50°N) or very high elevations (> 3000m) (Figures 7b, S1e). This result is consistent with the more active snowmelt and albedo-radiation feedback in these basins’ warm seasons. For basins with moderate temperatures, the difference in vapor pressure deficit change between warm and cool season warming contributes most to the asymmetry of ET-T sensitivity (293 basins), while changes in aerodynamic resistance and slope of saturated vapor pressure curve dominates fewer (12 for both) basins. For basins with the warmest temperatures, change in surface resistance becomes the dominant contributor to ET-T sensitivity’s asymmetry (294 basins).

Over the entire domain, changes in vapor pressure deficit and surface resistance contribute most to the asymmetry of ET-T sensitivity (587 of the 616 basins) and therefore dominate the annual streamflow response asymmetry.

5. Discussion

Milly and Dunne (2020) concluded that increased net radiation from reflective snow loss under warming contributes most to the annual streamflow decline under annual warming for the UCRB. However, in our results, for the asymmetry of streamflow responses to seasonal warming, change in available radiation contributes less than change in vapor pressure deficit and surface resistance across most of the WUS (Figure 7). There are several reasons for this. First, our discussion focuses on the asymmetry of annual streamflow response to seasonal warming instead of the annual streamflow response to annual warming as in Milly and Dunne (2020). Radiation-driven evapotranspiration increase is more evenly split by the warm and cool seasons than are evapotranspiration increases driven by changes in vapor pressure deficit or surface resistance (Figure S12, taking UCRB as an example). Therefore, changes in vapor pressure deficit and surface
resistance contribute more substantially to the seasonal asymmetry of annual streamflow response than does changes in available radiation (Figure S12). Second, we calculated contributions of vapor pressure deficit change and surface resistance change to evapotranspiration changes explicitly and separately in the Penman-Monteith expansion, while Milly and Dunne (2020) implicitly included contributions from the two processes together in the non-linear term category. Due to the feedback between elevated vapor pressure deficit and elevated surface resistance, if we consider the two factors’ total effect on evapotranspiration changes, their contributions partially cancel out, and the remaining net contribution to annual evapotranspiration change under annual 1°C warming is smaller than the contribution from available radiation change in the study area (UCRB) of Milly and Dunne (2020) (Table S2). Nevertheless, discussing the two factors explicitly and separately is beneficial since the cancellation level varies across different hydroclimate conditions, and varies when discussing the response asymmetry instead of annual response to annual warming (Figure 7).

We also notice in Table S2 that when contributions from surface resistance change and vapor pressure deficit change partially cancel out, the available radiation change is still not the largest contributor, and is slightly smaller than contribution from change of the slope of saturated vapor pressure curve, which differs from Milly and Dunne (2020)’s finding that snow-albedo effect contributes more to streamflow decline than do temperature-associated changes in saturated vapor pressure. This difference is probably due to differences in the evapotranspiration calculation framework. Our results come from a Penman-Monteith framework that considers the impact of vapor pressure deficit change on actual evapotranspiration, while Milly and Dunne (2020) used a Priestley-Taylor
framework that discounts this impact. Milly and Dunne (2020) modeled actual evapotranspiration as a fraction of potential evapotranspiration that is only related to moisture deficit from soil but not the one from atmosphere. In their counterfactual experiment that checks snow-albedo effect contribution to streamflow changes, net radiation sensitivity to albedo change is set to zero, leading to less available radiation increase under warming, thus less latent flux increase and less moistened air according to the Priestly-Taylor framework. However, the air is warmed by the same increment as in their radiation-sensitive experiment, so the saturated vapor pressure increments are the same between the counterfactual and radiation-sensitive experiments. Therefore, the vapor pressure deficit change in the counterfactual experiment is larger than in the radiation-sensitive experiment, but this stronger atmosphere deficit demand on actual evapotranspiration is not modeled in their analysis. As a result, the counterfactual experiment may overestimate the amount of evapotranspiration decrease/streamflow increase relative to the experiment that considers the radiation-albedo sensitivity, thus overestimating the contribution of radiation-albedo sensitivity (i.e., snow-albedo effect) to annual streamflow decline.

We recognize that our land surface modeling does not consider the impact of elevated humidity from warming-induced evapotranspiration increase on vapor pressure deficit, which could potentially overemphasize the increase of vapor pressure deficit under temperature warming, leading to a larger contribution of vapor pressure deficit change to evapotranspiration increase. To check this, we compared the relationship between vapor pressure deficit and air temperature in the VIC model and one high-resolution (50km) general circulation model (CNRM-CM6-1-HR) acquired from the Coupled Model
Intercomparison Project (CMIP) version 6 multi-model ensemble (Juckes et al., 2020; Voldoire, 2019). We used the two models’ daily historical period from 1950/01/01 to 2014/12/31 for the UCRB (using basin averages) and plotted the results in Figure S13. Vapor pressure deficit in the coupled model is slightly lower than that in the VIC model at moist pixels, and the two converge in regions with low soil moisture. In general, the difference between the slope of vapor pressure deficit vs. air temperature is not substantial between the two models, indicating the feedback between enhanced evapotranspiration and vapor pressure deficit should not substantially affect our findings based on the off-line implementation of the VIC model.

In addition to our model-based evaluation in section 4.4, we also utilized observation-based estimates (i.e., S_w and S_c in Eq. 4) to check their relationships with basin characteristics (Figure S11, detailed discussions see Text S1). Besides the similarity in general context, the observation-based results are more inclined to have a stronger streamflow decrease under cool season warming especially in moderate regions, and reflect a stronger suppressive effect of long-term snowpack reduction on streamflow sensitivity to warm season warming in cool regions, compared to results from model-simulations. Supposing the observation-based estimates can represent the reality, these differences may reflect how the real-world sensitivities could deviate from simulations.

Despite these differences, overall similarities between simulated and observation-based results (Figure 4, Figures S4-S7) suggest that the simulated results are not just reflecting how the model works, but also to a degree similar to the streamflow response in the external world. Here, some differences between simulated and observation-based estimates of streamflow response are not unexpected, and we choose to rely on model
outputs because: 1) Observation-based estimations treat each year as an individual realization of reference climates, which is less clear and informative than the model simulations treating baseline climatology as the reference climate. 2) Interannual variations in precipitation and their effect on streamflow generally dominate effects of temperature variation, complicating extraction of temperature effects from observations. This is a problem as well in observation-based estimations of elasticity, for example of annual streamflow to potential evapotranspiration (Xiao et al., 2020). 3) Some other issues in the observation-estimates, including shorter records, linear assumption, fewer predictors, and potential inevitable human disturbances to observations even after screening. There are also limitations in model simulations, such as static and smoothed parameters that may cause stronger spatial-smoothness of asymmetry than in reality. Further exploration of the streamflow responses with dynamical vegetation, higher spatial resolution, and atmosphere-land surface coupling models will be useful extensions of our work here.

6. Conclusions

We examined the complex spatial patterns of annual streamflow relative response to warm vs. cool season warming across the WUS. At a much higher granularity (HUC-8), we confirmed relationships between annual streamflow response asymmetry, temperature, and Gross Incoming Water found in our earlier work at much coarser spatial scales (Ban et al., 2020). We also evaluated the observation-based support for model-based sensitivity estimates; examined impacts of different basin surface characteristics on the patterns of annual streamflow relative response to seasonal warming; identified the processes that contribute most to the annual streamflow response asymmetry across the 616 HUC-8 basins, and discussed the relative role of net radiation as drivers to annual streamflow
sensitivity to seasonal warming. All of these analyses expand on our previous work (Ban et al., 2020). Additionally, the smooth transition of results from west- to east- of the Continental Divide suggests that our findings could be applied to other similar basins (snow-dominated, asymmetrical seasonal warming).

Based on our work, we conclude that:

1. Using the ratio of annual streamflow decreases resulting from warm vs. cool season warming, moist basins with relatively low temperatures, high warm-to-cool-season Gross Incoming Water ratios, and moderate winter snow accumulation have the largest asymmetries (ratio > 1). These basins are mostly at high latitude (north of 37.5°N) or high elevation, especially the northern Columbia River basin and most of the Upper Colorado River Basin. Warmer coastal basins have smaller asymmetry (ratio < 1). Extremely warm and arid basins (e.g., those bordering on the Mojave and Sonoran Deserts) and extremely cold basins with long snow seasons (e.g., three basins at the northern boundary of the Columbia River Basin) have negative asymmetries, with annual streamflow increases under warm season warming. Extremely arid but moderate temperature basins (e.g., those draining to the Great Basin) also have negative asymmetries, but with annual streamflow increases under cool season warming. Generally, stronger asymmetry occurs for cooler basins. This is because the ratio between warm and cool season evapotranspiration-temperature sensitivity which constrains the asymmetry is higher for cooler temperatures. Ban et al. (2020) found a similar pattern among four much larger river basins.

2. LOWESS-smoothed relationships between basin characteristics and asymmetry of annual streamflow responses from VIC indicate that cool (warm) basins streamflow tends to be more sensitive to warm (cool) season warming. In both types of basins, more...
vegetation enhances the above tendency. Runoff ratio and snow also enhance the tendency when runoff ratio < 0.5, SWE < 200mm, and snow cover fraction < 0.6, above these thresholds the net snowpack decrease mitigates the tendency. Compared with model-based results, observation-based estimates show less asymmetry towards warm season warming.

3. Different warming-associated processes dominate the asymmetry of seasonal evapotranspiration-temperature sensitivity and hence the response asymmetry for annual streamflow across the 616 HUC-8 basins. In the extremely cold basins with the shortest snow-free season with 85% or more of snowmelt-generated streamflow occurring after Apr 1st, available radiation changes that primarily due to reduced snow cover dominate the streamflow response asymmetry; in basins with intermediate temperature, vapor pressure deficit changes dominate, and in basins with the warmest temperatures, surface resistance increases under warmer temperature dominate.

Acknowledgments

We acknowledge Mr. Chandramauli Awasthi and Dr. Sankar Arumugam at North Carolina State University and Dr. Richard Vogel at Tufts University for their help in setting up panel regression with observations in our exploration for the paper. We acknowledge Chen Xin and Lu Su of UCLA Department of Geography for helpful discussions. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, which we used in the discussion section, the Earth System Grid Federation (ESGF) for archiving the data and
providing access, and the multiple funding agencies who support CMIP6 and ESGF. Data and codes in this paper are publicly available at the following URLs:

- VIC-4.1.2.g: https://doi.org/10.5281/zenodo.4695040.
- Other data (and information) used in this paper: https://doi.org/10.6084/m9.figshare.14349527.v5.

This work was funded in part by a grant from the NOAA Regional Integrated Sciences and Assessments (RISA) program to the California Nevada Climate Applications Program (CNAP) at the Scripps Institution of Oceanography, grant number NA17OAR4310284, under subaward to the University of California, Los Angeles.
References:

