

Land Surface Model parameter regionalization with remote sensing and observations Ben Livneh, Dennis. P. Lettenmaier.

ABSTRACT

shading) with an associated precipitation gauges (black dots). Stations were identified by Schaake et al. (2006).

1) University of Washington Department of Civil and Environmental Engineering Box 352700, Seattle, WA 98195. blivneh@hydro.washington.edu

Model Validation and Parameter Estimation

of basin attributes (Falcone, 2010).

Preliminary Results

Table 1: Estimated of flood damages (in 1995 dollar values) for a set of USGS basins (Pielke et al., 2002) that are a subset of the small-scale study domain.

USGS ID	Date	Damage (\$10 ⁶)	River name, location of gauge
01556000	9/27/1975	200	Frankstown Br Juniata R. at Williamsburg PA
02387000	3/15/1964	430.1	Conasauga R. at Tilton GA
05514500	5/18/1943	802	Ciuvr R. near Troy MO
07019000	7/3/1957	5475.3	Meramec R. near Eureka MO
06820500	9/15/1961	269	Platte R. near Agency MO
07056000	2/11/1966	160.5	Buffalo R. near St. Joe AR

Fig. 8: Calibration results compared with bias corrected model flows using apriori parameters (using a quantile mapping procedure) for six major flood events.

Major conclusions thus far:

- Conventional calibration to streamflow benefits from additional observational criteria, as seen by improvements resulting from inclusion of ET information in streamflow calibrations for roughly 1/3 of the basins.
- The framework for parameter regionalization is in place but will require additional analysis to establish predictive relationships and explore stronger correlations.
- Statistical bias-correction of pre-calibrated model outputs show reasonable performance in many cases. However, the water balance is not preserved in the bias correction, whereas it is preserved in calibration; offset by computational tradeoffs.

References

Livneh, B., P.J. Restrepo, and D.P. Lettenmaier, 2011: development of a unified land model for prediction of surface hydrology and land-atmosphere interactions, J. Hydrometeorol. (*in press*).

consumption, J. Geophys. Res., 114, D05114, doi:10.1029/2008JD010854. Falcone J.A., D.M. Carlisle, D.M. Wolock, and M.R. Meador, 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. *Ecology* 91:621.

Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller, 2002: Flood Damage in the United States, 1926-2000: A Reanalysis of National Weather Service *Estimates*. Boulder, CO: UCAR.

Tang, Q., S. Peterson, R.H. Cuenca, Y. Hagimoto, and D.P. Lettenmaier, 2009: Satellite-based near-real-time estimation of irrigated crop water consumption, J. Geophy. Res., 114, D05114.