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SWOT Mission Overview


SWOT Measurement Accuracy 
Requirements

SWOT will measure water surface slope, water surface elevation (WSE) and areal 
extent of surface water globally (between 78°N and 78°S latitude). Measurements 
at most locations will be made at least twice in a 22-day repeat period. For rivers 
the science requirements are as follows: 

* See SWOT Science Requirements Document, available at http://
swot.jpl.nasa.gov/mission/ 

Errors in Derived Quantities


Width

Width estimates from the water mask are limited by classification errors; 
classification algorithms are still in development. Early investigations (Moller et 
al., 2008) show that the effect of 20 ms water coherence time on relative width 
errors can be reduced from ~7%  averaged over a 100 m long reach to ~4% 
averaged over reaches between 1-2 km in length. They also found that as 
decorrelation approaches infinity, finite pixel sizes provide a lower bound on width 
bias (~10 m). 

Water DepthŦ

SWOT measures WSE relative to some datum. Manning’s equation requires water 
depth, which is equal to the difference between WSE and channel bathymetry. 
Since channel bathymetry at most locations is unknown, water depth will have to 
be derived from available observations. One possible approach, outlined by 
Durand et al. (2009), applies the continuity and kinematic assumptions to estimate 
initial water depth from width, temporal change in water depth (change in WSE) 
about this initial value, and slope from SWOT. Assuming that Manning’s n is 
known from ancillary data, Durand et al. (2009) estimated depth for a model of the 
Ohio River with a mean relative error of 4.1% and standard deviation of relative 
error of 11.2 %. 

Manningʼs Roughness (n)

Manning’s roughness is generally calibrated from field measurements or estimated 
visually on location; however, some efforts have been made to estimate n from 
channel form. The following regressions are rewritten here in terms of SWOT 
observables assuming a rectangular cross-section: 
Riggs (1976): n=0.210w-0.33(z0+dz)0.33s0.095 
Jarrett (1984): n=0.32(z0+dz)-0.16s0.38 

Dingman and Sharma (1997): n=0.217w-0.173(z0+dz)0.094s0.156 
Bjerklie et al. (2005) Model 1: n=0.139w-0.02(z0+dz)-0.073s0.15 

Errors associated with these regressions are estimated in Figure 1. 

Introduction

Many rivers worldwide are currently unmonitored. Widespread installation and 
maintenance of traditional river gages is either economically or physically 
infeasible. As such, monitoring of the world’s freshwater by satellite remote 
sensing is an attractive supplement to the in situ river gage network. The Surface 
Water and Ocean Topography (SWOT) mission will measure water surface 
elevations (WSE), water surface slope, and the areal extent of lakes, wetlands, 
reservoirs, floodplains, and rivers globally. 

Ultimately, SWOT should provide enough information from which to estimate 
instantaneous river discharge for moderately large rivers (at least 100 m 
wide). Although multiple algorithms of varying complexity are being developed 
for river discharge estimation, a simple approach is the application of Manning’s 
equation. The error implications of applying Manning’s Equation to SWOT 
measurements are considered here. 

Conclusions

 Discharge can be estimated by applying Manning’s equation to SWOT-
derived data and will be most accurate for  large rivers, with accuracies at or 
near 20% for rivers wider than 100 m, assuming improved estimation of n. 
 Discharge errors are highly sensitive to errors in water depth. Additional 
depth retrieval algorithms are under development and may lower the errors 
from this contribution. Estimating depth around an initial depth during low 
flows (enabled by collecting a long time series of data) can further limit the 
errors in SWOT-derived discharge. 

Future work

  Width and roughness estimation algorithms require additional 
consideration, and investigations into deriving these from data assimilation 
into hydraulic models are on-going (Durand et al., 2008). The spatially 
distributed nature of SWOT measurements should be further exploited to 
improve roughness estimates.  
 Error covariances between SWOT-derived variables and their impact on 
discharge error should be explored. 

•  Ka-band SAR 
interferometric system 
with 2 swaths, 60 km each 

•  WSOA and SRTM 
heritage 

•  Produces heights and co-
registered all-weather 
imagery 

•  Additional instruments: 
–  conventional Jason-

class altimeter for 
nadir coverage 

–  AMR-class radiometer 
(with possible high 
frequency band 
augmentation) to 
correct for wet-
tropospheric delay 

Measurement Required Accuracy (1σ)* 
Slope 1 cm/km, over 10 km downstream 

distance inside river mask 
WSE 10 cm, averaged over 1 km2 area within 

river mask 
Area 20% for all rivers at least 100 m wide 

Manningʼs Equation to Estimate 
Discharge from SWOT

River discharge is often estimated on the ground by applying Manning’s equation 
to fully rough, turbulent and uniform flows as follows: 

where n is the Manning’s roughness, A is cross-sectional area (m2), R is hydraulic 
radius (m), and s is water surface slope. 
LeFavour and Alsdorf (2005) applied this equation assuming a rectangular channel 
cross-section and river width much greater than depth to estimate flows for the 
Amazon River (to within <8% of in-situ gage estimates) from SRTM-derived slope 
and water heights, as well as ground-based estimates of channel bathymetry and 
river width. We can similarly apply this equation with water depth equal to a 
baseline water depth plus the change in water depth as: 

where w is width (m), z0 is initial depth (m), dz is the temporal change in WSE 
measured by SWOT.  
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Ground-based Data Set

The analyses presented here draw on a collection of reach-averaged channel 
properties of rivers in New Zealand, the Amazon, and the United States as 
compiled by Bjerklie et al. (2003) and provided to the authors by David Bjerklie. 
Summary statistics for the 1038 observations on 103 river reaches are tabulated 
here. Widths are greater than 100 m for 401 of these observations. 

Reach-averaged Value
 Mean
 Standard 
Deviation


Minimum
 Maximum


Discharge (m3/s) 1083 9056 0.01 283170 

Width (m) 131 193 2.9 3870 
Depth (m) 2.39 2.36 0.10 33.00 

Slope (measured water 
surface or from 
topographic mapping)  

0.0026 0.0052 0.000013 0.0418 

Manning’s n (calculated 
from measured discharge) 

0.034 0.046 0.008 0.664 

Rivers >100 m wide


 J       R     DS    B1   JDS  JB1 

0 

Relative 
Error in n 
(%)


-57% 
21% 

-27% 
23% 

-16% 
24% 

9% 
35% 

-17% 
24% 

8% 
35% 

Mean 
Standard deviation 

All rivers


 J       R     DS    B1   JDS  JB1 

0 

Relative 
Error in n 
(%)


-44% 
30% 

-16% 
35% 

-5% 
36% 

11% 
41% 

4% 
39% 

-9% 
35% 

Mean 
Standard deviation 

ŦSee also H51A-0749. Intercomparison of algorithms to estimate river 
depth from SWOT observations of slope and width M. T. Durand; M. A. 
Fonstad; T. M. Pavelsky; D. Alsdorf. Friday, December 18, 2009, 8:00 
AM-12:20 PM 

Figure 1. Box plot of 
relative errors in n for 
calculated using Jarrett (J), 
Riggs (R), Dingman and 
Sharma (DS), Bjerklie 
Model 1 (B1), a 
combination of J and DS 
(JDS), and a combination 
of J and B1 (JB1) 
regression models as 
applied to the ground-
based data set. In 
combination models, J was 
used where s was between 
0.002 to 0.04 and z was 
between 0.15 to 2.1 m, and 
DS or B1 was used 
elsewhere. (a) shows errors 
for all reaches in the data 
set, and (b) shows errors 
for only those reaches 
wider than 100m.   

First Order Uncertainty Analysis 

If we assume that Manning’s equation can be linearized using a first-order Taylor’s 
series expansion, then the variance in Q about a mean “true” value due to 
measurement error can be written as: 

€ 

E[Q(n,w,z0,dz,s)] ≈Q(E[n], E[w],E[z0], E[dz], E[s])
∴Var[Q] ≈ ACAT

where A = ′ Q n ′ Q w ′ Q z0
′ Q dz ′ Q s[ ]  and C is the covariance matrix. 

If the terms are assumed to be independent, this becomes :
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Figure 2. (a) Relative discharge error binned by width assuming SWOT 
accuracy requirements for slope (σs=1e-5) and WSE (σdz=0.10 m) and zero error in 
bathymetry, n, and width. (b) Remaining variance that can be distributed between 
bathymetry, n, and width without exceeding 20% error in Q. (c) Same as (a) except 
that error in bathymetry is included (σz0=0.11*z0). (d) Remaining variance that can 
be distributed between n and width without exceeding 20% error in Q. (e) Same as 
(c) except that error in n (σn=0.10*n) has been included. (f) Remaining variance 
that can come from width without exceeding 20% error in Q. 
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Resulting relative discharge errors from applying this equation to the ground-based 
data set, assuming that z0 = 0.5*(z0+dz), are shown in Figure 2. 

Black line 
shows mean 
of all 
reaches in 
width bin 

Gray range 
shows (+/-) 
standard 
deviation of  
all reaches 
in width bin 

Figure 3. (a) Relative discharge error binned by width 
assuming SWOT accuracy requirements for slope 
(σs=1e-5) and WSE (σdz=0.10 m) and zero error in 
bathymetry, n, and width. (b) Same as (a) except that 
error in bathymetry is included (σz0=0.11*z0). (c) Same as 
(b) except that error in n (σn=0.10*n) has been included. 
(d) Same as (c) except that a constant 10 m bias in width 
has been included. 

Figure 4. If errors in estimating the initial depth 
(effective bathymetry) are indeed relative rather than 
absolute, then the value of the initial depth impacts 
overall discharge error. In previous figures, the initial 
depth was assumed to be 50% of the one-time depth 
measurement in the ground-based data set. These 
panels show the relative discharge error due to slope, 
WSE and bathymetry errors (comparable to Figs. 2c 
and 3b) with the initial depth set to 20, 40, 60, and 
80% of the one-time depth measurement. Lower initial  
depths (closer to baseflow) yield smaller Q errors. 

Monte Carlo Error Propagation

To produce a more realistic distribution of errors, accounting for the fact that the actual error in a given term may fall 
above or below the 1σ error, we also used a Monte Carlo  approach to modeling errors. For each observation in the 
ground-based data set, we generated 1000 perturbed realizations of discharge, representative of what might be estimated 
from SWOT observations, in which each variable was perturbed by a randomly generated error from the normal 
distribution with mean=0 and standard deviation=1σ. The relative errors in Q for all 1000 perturbed realizations of each 
observation were calculated and binned by width as before and are shown in Fig. 3. Sensitivity to initial depth is 
considered in Fig. 4. 
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Figure 4. Relative discharge error, 
binned by width, resulting from varying 
1σ errors in Manning’s roughness from 
10% (gray) to 20% (blue). For 1σn 
errors of 30%-40% the standard 
deviation of relative Q error is 
>~10,000%. 
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Errors in Derived Quantities


Width

Width estimates from the SWOT water mask will be limited by classification 
errors, estimation of which is still in development. Early investigations (Moller et 
al., 2008) show that the effect of 20 ms water coherence time on relative width 
errors can be reduced from ~7%  averaged over a 100 m long reach to ~4% 
averaged over reaches between 1-2 km in length. They also found that as 
decorrelation approaches infinity, finite pixel sizes provide a lower bound on width 
bias (~10 m). 

Water DepthŦ

SWOT will measure WSE relative to a given datum. Manning’s equation requires 
water depth, which is equal to the difference between WSE and channel 
bathymetry. Since channel bathymetry at most locations is unknown, water depth 
will have to be derived from available observations. One possible approach, 
outlined by Durand et al. (2009), applies the continuity and kinematic assumptions 
to estimate initial water depth from width, temporal change in water depth (change 
in WSE) about this initial value, and slope from SWOT. Assuming that Manning’s 
n is known from ancillary data, Durand et al. (2009) estimated depth for a model 
of the Ohio River with a mean relative error of 4.1% and standard deviation of 
relative error of 11.2 %. 

Manningʼs Roughness (n)

Manning’s roughness is generally calibrated from field measurements or estimated 
visually in situ; however, some efforts have been made to estimate n from channel 
form. The following regressions are rewritten here in terms of SWOT observables 
assuming a rectangular cross-section: 
Riggs (1976): n=0.210w-0.33(z0+dz)0.33s0.095 
Jarrett (1984): n=0.32(z0+dz)-0.16s0.38 

Dingman and Sharma (1997): n=0.217w-0.173(z0+dz)0.094s0.156 
Bjerklie et al. (2005) Model 1: n=0.139w-0.02(z0+dz)-0.073s0.15 

Errors associated with these regressions are estimated in Figure 1. 
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