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ABSTRACT
Snow is a major component of the hydrologic cycle and can play an important role in water resources management, 
especially in mountainous areas like the western United States. Current model-based approaches to hydrologic forecasting 
are limited by model biases and input data uncertainties, while ground based measurements have limited coverage and are 
unable to capture the spatial and temporal variability of snow properties. Remote sensing offers an opportunity for 
observation of snow properties, like areal extent and water equivalent, over large areas. The Moderate Resolution Imaging 
Spectroradiometer (MODIS) has been operational since early 2000, and provides snow cover information at 500 m spatial 
resolution which is appropriate for regional applications. However, visible wavelength sensors like MODIS are inhibited by 
cloud cover which causes temporal discontinuities. Furthermore, MODIS provides no information about snow water content. 
Data assimilation offers a framework for optimally merging information from remotely sensed observations and hydrologic 
model predictions, and ideally overcoming limitations of both. This work describes the assimilation of MODIS snow areal 
extent data into a macroscale hydrologic model over the Snake River basin, using an ensemble Kalman filter (enKF). The 
approach is built around the Variable Infiltration Capacity (VIC) macroscale hydrology model, which balances water and 
energy over each model grid cell at each timestep. The state variables included snow water equivalent at each model 
elevation band. Results showed that the enKF is an effective and operationally feasible solution for the assimilation of 
remotely sensed observations. The filter successfully updated snow cover predictions by the model. Ground observation 
comparisons using SNOTEL and NCDC Cooperative Observer snow water equivalent and snow depth data, respectively, 
indicate that the filter estimates are an improvement over the  open-loop  VIC simulations. Finally, the effect of the 
assimilation on streamflow and the potential of bias correction using data assimilation are discussed. 
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2 Hydrologic Model
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5 Model Implementation 

The hydrologic model used in this study is the Variable Infiltration 
Capacity (VIC) model (Liang et al. 1994). Essentially the model 
solves a water and energy balance over a grid mesh. VIC 
accounts for subgrid variability in  topography and land cover by 
representing each grid cell as a number of subgrid tiles of a 
certain land cover type and elevation zone. SCA is represented 
indirectly, by assuming that a tile is fully covered if any snow is 
present. Thus, SCA is just the area-weighted sum of all snow-
covered tiles. Snowpack dynamics are modeled using a two-layer 
energy and mass balance model (Figure 1). The upper layer 
solves the energy balance between the snowpack and the 
atmosphere, while the lower layer acts as storage of excess snow 
and simulates deeper snowpacks. Other processes accounted for 
include snow densification and interception (Cherkauer and 
Lettenmaier, 2003).

Figure 1. VIC snow model component.

When updating model predicted SWE by assimilating snow areal extent data, 
such a non-linear functional is necessary. In this study, a snow depletion curve 
parameterization scheme developed by Anderson (1973) is used, which 
relates areal average SWE to the snow covered area of the model element.  
To better account for snow spatial variability, we categorized the VIC subgrid 
tiles in nine different physiographic classes, based on elevation (between 0, 
1500 and 2000 m) and land cover (forest, shrublands, and grasslands). A 
separate depletion curve was developed for each of these physiographic 
classes. It is generally difficult to obtain direct observations of both SCA and 
SWE from which the depletion curve can be estimated. The approach we used 
makes use of the MODIS dataset and SWE estimates from the prior VIC 
simulations to infer the parameters and shape of the depletion curve. A full 
coverage SWE parameter is calculated by examining the snow extent time 
series and averaging the SWE values that corresponded to full snow coverage 
immediately before the onset of snowmelt. We chose to fit 2-parameter 
gamma distributions to the combined MODIS SCA and modeled SWE (Figure 
2). Despite the large scatter, which can be partly attributed to discrepancies 
between VIC simulations and MODIS observations, fitting gamma distributions 
to the data seemed a reasonable approach. 

3 Ensemble Kalman Filtering
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The Kalman filter solves the optimal estimation problem for linear 
processes, i.e. the state estimation of a process. The KF accounts for 
errors in both model and observations, by explicitly propagating the 
model error covariance information in time (Gelb, 1974). This proves 
to be very expensive computationally for large-scale applications. 
Evensen (1994) developed a Monte Carlo approach to the KF, the 
ensemble Kalman filter (enKF). This avoids the propagation of the 
error information, by implicitly calculating the required error 
covariances from an ensemble of model states. The algorithm starts 
with the propagation of each model ensemble member to the timestep 
that an observation becomes available (forecast step). The ensemble 
is generated at each timestep by treating model parameters as a 
stochastic variables (e.g. forcing data). At the observation time 
(analysis step), the calculated error covariance matrix Pf is used to 
compute the Kalman gain, that weighs the magnitude of the effect of 
the observations, and the model-predicted state yf is updated to ya. H 
is the observation operator, which relates the state variables to the
observations. This allows for assimilation of indirectly observed variables, e.g. assimilation of SCA to update 
model-predicted SWE. Each ensemble member i is updated separately and the filter estimate is usually taken as 
the mean of the ensemble values.

The advent of the EOS era and the operational use of very promising remote sensing instruments, such as the 
MODIS and AMSR-E, has increased the potential for assimilating data products, from those satellites, into land 
surface models. One of the widely used data assimilation techniques in hydrology, is the ensemble Kalman filter. 
This work attempts to assess the performance of a data assimilation system that incorporates snow covered 
area (SCA) information into the VIC model, over a period of four consecutive winters (2000-2003) at the Snake 
River basin. The latter is a major tributary of the Columbia basin, where about 75% of the annual streamflow is 
driven by snowmelt. Our experiment uses real observations; in contrast with synthetic experiments the true state 
of the system is unknown, and hence the performance of the enKF must be evaluated either by comparison with 
independent data or qualitatively. Surface observations are the only practical option for independent evaluation. 
We used data from two station networks, SNOTEL and COOP that provide snow water equivalent (SWE) and 
depth respectively. In order to account for the scaling issues in comparing areal estimates with point 
measurements, we expressed simulated and SNOTEL SWE as percentiles of their respective climatology (taken 
from a 20 year record, 1983-2003). Also, stations that had an elevation difference from the model grid cell mean 
elevation, greater than 200 m were excluded from the comparisons. 
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Figure 3. Spatial maps of percentage agreement of snow covered days for VIC (left) and the enKF 
(right) simulations, with MODIS observations, for the entire simulation period. 

The model was applied at a spatial resolution of 1/8o and hourly timestep. The 
model state variables are SWE at each VIC model subgrid tile. The ensemble 
of model states is generated by treating precipitation and air temperature 
forcing data as stochastic variables. Log-normally distributed precipitation 
values were generated and implemented as in (Nijssen and Lettenmaier,  
2004)                                                                , where E is the relative error 
(taken here as 25%). Minimum and maximum air temperature values were 
generated by perturbing the daily air temperature mean and range as follows,   
                                                                       .   are spatially correlated 
Gaussian random fields with mean zero, generated with a 2-D turning bands 
a;gorithm and an arbitrarily selected exponential correlation model. VIC is 
formulated in a way that it solves eacg grid cell separately; this allows for a 
small ensemble size (here chosen as 25). The data assimilated were obtained 
from the MODIS daily snowcover product, which is produced at a 500 m 
spatial resolution. The data were aggregated to the model resolution, and the 
end product was a fractional snow cover map of the VIC model elevation 
bands. In addition, a fractional cloud cover threshold of 20% was used to 
decide whether to use the observation or not. The observation error was 
represented as a normally distributed random variable with zero mean and 
10% standard deviation. 
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Figure 3 shows spatial maps of the percentage agreement of snow covered days for the prior and filter estimate with MODIS SCA. 
The days included in the comparison were selected based on whether MODIS imagery was missing or excessively cloud covered. 
Because these maps only reflect the presence of snow, the cloud cover threshold for the comparison was set to 50%. This figure 
clearly shows that in general the enKF updates model predicted SCA in a consistent manner. The filter estimates do not match the 
MODIS observations exactly because the enKF accounts for errors in both model predictions and observations. Next we compare 
SCA from MODIS and the two model simulations with ground measurements. The same procedure for the selection of days was 
followed, but the comparisons were limited to the model pixels where a ground station was present. The elevation difference

screening reduced the available number of stations to 
124 from 257 (elevations from 114 to 2874 m). The table 
below shows the results of this comparison averaged 
over all the available stations. Both simulations and 
MODIS show good agreement with ground observations, 
however none of them is perfect. On average the enKF 
simulation shows a small improvement over the prior 
simulation and MODIS.

Data Source Min Mean Max

MODIS 0.542 0.903 1.000 42
VIC 0.778 0.922 0.996 26

VICenKF 0.800 0.931 1.000 56

Number of stations 
with minimum 

misclassification

In terms of hydrologic forecasting an interesting 
variable is the peak seasonal SWE. Figure 4 
shows scatterplots of the seasonal maximum 
SWE for SNOTEL and the two simulations. Even 
though the results are similar the enKF reduces 
the scatter somewhat, and the filter-estimated 
peak SWE is closer to the corresponding 
SNOTEL value for 58 of the available 66 
stations. 
Comparing the SWE percentiles for individual SNOTEL stations, we can compute the RMSE. On average 
the RMSE for both simulations tends to be the same (0.19 versus 0.17, with 40 out of 66 stations having a 
lower RMSE), however for some stations the enKF estimate has a larger error than the open-loop 
simulation. Better insight can be obtained by examining a SWE percentile timse series for a specific station 

(Figure 5, W Yellowstone station, 2010 m). The 
enKF successfully updated the snow areal extent, 
which verifies our assumption about the small 
ensemble size used. However, the filter 
consistently overestimated SWE when compared 
to the SNOTEL value. Early in the accumulation 
season, the model-predicted SCA was less than 
one and therefore the MODIS observations of full 
coverage resulted in a relatively large increase of 
SWE. Subsequently, both the open-loop simulation 
and enKF (as well as MODIS) were at full 
coverage, which means that no updates occurred, 
and SWE was adjusted entirely based on the VIC 
model physics. The large departure of the enKF 
SWE at the beginning of the accumulation season 
may be attributed to the SDC parameters (e.g. low 
SWE value that corresponds to full snow cover).

Figure 5. Comparison of SWE percentiles between prior estimate 
(red line), enKF (green line) and SNOTEL (blue line) for the West 
Yellowstone SNOTEL station (upper panel). The lower panel 
displays the modelpredicted SCA for VIC (red) and enKF (green), 
and actual MODIS observations (blue points).

Figure 2. Fitted snow depletion curves for three physiographic classes. Bars show 25th and 75th 
percentile of the MODIS SCA and VIC SWE (mm).

Figure 4. Comparison of seasonal maximum SWE between model 
simulations and SNOTEL measurements.

VIC enKF

An important issue arises when assimilating snow observations for streamflow prediction. The data 
assimilation updates SWE and SCE by compensating for errors in temperature and precipitation forcings. 
Assuming that the model temperature is biased positively, the model will tend to melt the snowpack earlier. 
The assimilation of a snow observation will restore the snowpack to its ``true'' state but at the same time it 
will introduce water balance errors. Similarly, in a cold biased simulation, the model snowpack will persist as 
long as no observation is available to correct the SWE estimate. The magnitude of the water balance errors 
will depend on the assimilation frequency. Therefore, it is essential to remove such biases for an operational 
snow data assimilation application. This can be achieved by constraning the model error (namely 
precipitation and temperature forcings) as well as the model states, i.e. augmenting the state vector and 
incorporating temporal correlation to the stochastic forcings. 

This can also be seen in this table, which shows the 
SWE RMSE averaged for all SNOTEL stations for 
different elevation zones and accumulation/ablation 
periods. We can see that the assimilation had the 
smallest impact at higher elevations, which can be 
explained by the fact that snow coverage tends to be 
100% most of the time at the highest elevations, and 

Lower Elevation Mid Elevation Higher Elevation

Ablation Ablation Ablation

VIC 0.144 0.285 0.143 0.310 0.175 0.250
0.192 0.248 0.188 0.261 0.190 0.243

Accu
mula
tion

Accu
mula
tion

Accu
mula
tion

enKF

therefore the updates have a smaller effect on SWE. On the contrary, for mid and lower elevations the 
impact of the assimilation is larger either negative (accumulation) or positive (snowmelt).


